ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab2co Unicode version

Theorem oprab2co 5839
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
Hypotheses
Ref Expression
oprab2co.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )
oprab2co.2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )
oprab2co.3  |-  F  =  ( x  e.  A ,  y  e.  B  |-> 
<. C ,  D >. )
oprab2co.4  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )
Assertion
Ref Expression
oprab2co  |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
Distinct variable groups:    x, y, A   
x, B, y    x, M, y    x, R, y   
x, S, y
Allowed substitution hints:    C( x, y)    D( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprab2co
StepHypRef Expression
1 oprab2co.1 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )
2 oprab2co.2 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )
3 opelxpi 4376 . . 3  |-  ( ( C  e.  R  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( R  X.  S
) )
41, 2, 3syl2anc 391 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. C ,  D >.  e.  ( R  X.  S
) )
5 oprab2co.3 . 2  |-  F  =  ( x  e.  A ,  y  e.  B  |-> 
<. C ,  D >. )
6 oprab2co.4 . . 3  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )
7 df-ov 5515 . . . . 5  |-  ( C M D )  =  ( M `  <. C ,  D >. )
87a1i 9 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( C M D )  =  ( M `
 <. C ,  D >. ) )
98mpt2eq3ia 5570 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )  =  ( x  e.  A ,  y  e.  B  |->  ( M `  <. C ,  D >. ) )
106, 9eqtri 2060 . 2  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( M `  <. C ,  D >. )
)
114, 5, 10oprabco 5838 1  |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   <.cop 3378    X. cxp 4343    o. ccom 4349    Fn wfn 4897   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator