Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrnov Unicode version

Theorem fnrnov 5646
 Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
fnrnov
Distinct variable groups:   ,,,   ,,,   ,,,

Proof of Theorem fnrnov
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 5220 . 2
2 fveq2 5178 . . . . . 6
3 df-ov 5515 . . . . . 6
42, 3syl6eqr 2090 . . . . 5
54eqeq2d 2051 . . . 4
65rexxp 4480 . . 3
76abbii 2153 . 2
81, 7syl6eq 2088 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1243  cab 2026  wrex 2307  cop 3378   cxp 4343   crn 4346   wfn 4897  cfv 4902  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-ov 5515 This theorem is referenced by:  ovelrn  5649
 Copyright terms: Public domain W3C validator