Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpt2xopn0yelv | Unicode version |
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpt2xopn0yelv.f |
Ref | Expression |
---|---|
mpt2xopn0yelv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2xopn0yelv.f | . . . . 5 | |
2 | 1 | dmmpt2ssx 5825 | . . . 4 |
3 | 1 | mpt2fun 5603 | . . . . . . 7 |
4 | funrel 4919 | . . . . . . 7 | |
5 | 3, 4 | ax-mp 7 | . . . . . 6 |
6 | relelfvdm 5205 | . . . . . 6 | |
7 | 5, 6 | mpan 400 | . . . . 5 |
8 | df-ov 5515 | . . . . 5 | |
9 | 7, 8 | eleq2s 2132 | . . . 4 |
10 | 2, 9 | sseldi 2943 | . . 3 |
11 | fveq2 5178 | . . . . 5 | |
12 | 11 | opeliunxp2 4476 | . . . 4 |
13 | 12 | simprbi 260 | . . 3 |
14 | 10, 13 | syl 14 | . 2 |
15 | op1stg 5777 | . . 3 | |
16 | 15 | eleq2d 2107 | . 2 |
17 | 14, 16 | syl5ib 143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wcel 1393 cvv 2557 csn 3375 cop 3378 ciun 3657 cxp 4343 cdm 4345 wrel 4350 wfun 4896 cfv 4902 (class class class)co 5512 cmpt2 5514 c1st 5765 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 |
This theorem is referenced by: mpt2xopovel 5856 |
Copyright terms: Public domain | W3C validator |