ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2xopn0yelv Unicode version

Theorem mpt2xopn0yelv 5854
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopn0yelv.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  C )
Assertion
Ref Expression
mpt2xopn0yelv  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
Distinct variable groups:    x, y    x, K    x, V    x, W
Allowed substitution hints:    C( x, y)    F( x, y)    K( y)    N( x, y)    V( y)    W( y)    X( x, y)    Y( x, y)

Proof of Theorem mpt2xopn0yelv
StepHypRef Expression
1 mpt2xopn0yelv.f . . . . 5  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  C )
21dmmpt2ssx 5825 . . . 4  |-  dom  F  C_ 
U_ x  e.  _V  ( { x }  X.  ( 1st `  x ) )
31mpt2fun 5603 . . . . . . 7  |-  Fun  F
4 funrel 4919 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 7 . . . . . 6  |-  Rel  F
6 relelfvdm 5205 . . . . . 6  |-  ( ( Rel  F  /\  N  e.  ( F `  <. <. V ,  W >. ,  K >. ) )  ->  <. <. V ,  W >. ,  K >.  e.  dom  F )
75, 6mpan 400 . . . . 5  |-  ( N  e.  ( F `  <. <. V ,  W >. ,  K >. )  -> 
<. <. V ,  W >. ,  K >.  e.  dom  F )
8 df-ov 5515 . . . . 5  |-  ( <. V ,  W >. F K )  =  ( F `  <. <. V ,  W >. ,  K >. )
97, 8eleq2s 2132 . . . 4  |-  ( N  e.  ( <. V ,  W >. F K )  ->  <. <. V ,  W >. ,  K >.  e.  dom  F )
102, 9sseldi 2943 . . 3  |-  ( N  e.  ( <. V ,  W >. F K )  ->  <. <. V ,  W >. ,  K >.  e.  U_ x  e.  _V  ( { x }  X.  ( 1st `  x ) ) )
11 fveq2 5178 . . . . 5  |-  ( x  =  <. V ,  W >.  ->  ( 1st `  x
)  =  ( 1st `  <. V ,  W >. ) )
1211opeliunxp2 4476 . . . 4  |-  ( <. <. V ,  W >. ,  K >.  e.  U_ x  e.  _V  ( { x }  X.  ( 1st `  x
) )  <->  ( <. V ,  W >.  e.  _V  /\  K  e.  ( 1st `  <. V ,  W >. ) ) )
1312simprbi 260 . . 3  |-  ( <. <. V ,  W >. ,  K >.  e.  U_ x  e.  _V  ( { x }  X.  ( 1st `  x
) )  ->  K  e.  ( 1st `  <. V ,  W >. )
)
1410, 13syl 14 . 2  |-  ( N  e.  ( <. V ,  W >. F K )  ->  K  e.  ( 1st `  <. V ,  W >. ) )
15 op1stg 5777 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( 1st `  <. V ,  W >. )  =  V )
1615eleq2d 2107 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( K  e.  ( 1st `  <. V ,  W >. )  <->  K  e.  V ) )
1714, 16syl5ib 143 1  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   _Vcvv 2557   {csn 3375   <.cop 3378   U_ciun 3657    X. cxp 4343   dom cdm 4345   Rel wrel 4350   Fun wfun 4896   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   1stc1st 5765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768
This theorem is referenced by:  mpt2xopovel  5856
  Copyright terms: Public domain W3C validator