ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg Unicode version

Theorem vtoclg 2613
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
Hypotheses
Ref Expression
vtoclg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclg.2  |-  ph
Assertion
Ref Expression
vtoclg  |-  ( A  e.  V  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem vtoclg
StepHypRef Expression
1 nfcv 2178 . 2  |-  F/_ x A
2 nfv 1421 . 2  |-  F/ x ps
3 vtoclg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtoclg.2 . 2  |-  ph
51, 2, 3, 4vtoclgf 2612 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559
This theorem is referenced by:  vtoclbg  2614  ceqex  2671  mo2icl  2720  nelrdva  2746  sbctt  2824  sbcnestgf  2897  csbing  3144  prnzg  3492  sneqrg  3533  unisng  3597  csbopabg  3835  trss  3863  inex1g  3893  ssexg  3896  pwexg  3933  prexgOLD  3946  prexg  3947  opth  3974  ordelord  4118  uniexg  4175  vtoclr  4388  resieq  4622  csbima12g  4686  dmsnsnsng  4798  iota5  4887  csbiotag  4895  funmo  4917  fconstg  5083  funfveu  5188  funbrfv  5212  fnbrfvb  5214  fvelimab  5229  ssimaexg  5235  fvelrn  5298  isoselem  5459  csbriotag  5480  csbov123g  5543  ovg  5639  tfrexlem  5948  rdg0g  5975  ensn1g  6277  fundmeng  6287  xpdom2g  6306  phplem3g  6319  prcdnql  6582  prcunqu  6583  prdisj  6590  shftvalg  9437  shftval4g  9438  climshft  9825  bdzfauscl  10010  bdinex1g  10021  bdssexg  10024  bj-prexg  10031  bj-uniexg  10038
  Copyright terms: Public domain W3C validator