ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfveu Unicode version

Theorem funfveu 5131
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
funfveu  Fun  F  dom  F  F
Distinct variable groups:   ,   , F

Proof of Theorem funfveu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2097 . . . . 5  dom  F  dom  F
21anbi2d 437 . . . 4  Fun  F  dom  F  Fun 
F  dom  F
3 breq1 3758 . . . . 5  F  F
43eubidv 1905 . . . 4  F  F
52, 4imbi12d 223 . . 3  Fun  F  dom  F  F  Fun  F  dom  F  F
6 dffun8 4872 . . . . 5  Fun 
F  Rel  F  dom  F  F
76simprbi 260 . . . 4  Fun 
F  dom  F  F
87r19.21bi 2401 . . 3  Fun  F  dom  F  F
95, 8vtoclg 2607 . 2  dom  F  Fun  F  dom  F  F
109anabsi7 515 1  Fun  F  dom  F  F
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wceq 1242   wcel 1390  weu 1897  wral 2300   class class class wbr 3755   dom cdm 4288   Rel wrel 4293   Fun wfun 4839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-id 4021  df-cnv 4296  df-co 4297  df-dm 4298  df-fun 4847
This theorem is referenced by:  funfvex  5135
  Copyright terms: Public domain W3C validator