ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth Unicode version

Theorem opth 3974
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
2 opth1.2 . . . 4  |-  B  e. 
_V
31, 2opth1 3973 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
41, 2opi1 3969 . . . . . . 7  |-  { A }  e.  <. A ,  B >.
5 id 19 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
64, 5syl5eleq 2126 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
7 oprcl 3573 . . . . . 6  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
86, 7syl 14 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
98simprd 107 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  D  e.  _V )
103opeq1d 3555 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  B >. )
1110, 5eqtr3d 2074 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  = 
<. C ,  D >. )
128simpld 105 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
13 dfopg 3547 . . . . . . . 8  |-  ( ( C  e.  _V  /\  B  e.  _V )  -> 
<. C ,  B >.  =  { { C } ,  { C ,  B } } )
1412, 2, 13sylancl 392 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  =  { { C } ,  { C ,  B } } )
1511, 14eqtr3d 2074 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  B } } )
16 dfopg 3547 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
178, 16syl 14 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
1815, 17eqtr3d 2074 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } } )
19 prexgOLD 3946 . . . . . . 7  |-  ( ( C  e.  _V  /\  B  e.  _V )  ->  { C ,  B }  e.  _V )
2012, 2, 19sylancl 392 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  e.  _V )
21 prexgOLD 3946 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  { C ,  D }  e.  _V )
228, 21syl 14 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  D }  e.  _V )
23 preqr2g 3538 . . . . . 6  |-  ( ( { C ,  B }  e.  _V  /\  { C ,  D }  e.  _V )  ->  ( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D } ) )
2420, 22, 23syl2anc 391 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D }
) )
2518, 24mpd 13 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  =  { C ,  D } )
26 preq2 3448 . . . . . . 7  |-  ( x  =  D  ->  { C ,  x }  =  { C ,  D }
)
2726eqeq2d 2051 . . . . . 6  |-  ( x  =  D  ->  ( { C ,  B }  =  { C ,  x } 
<->  { C ,  B }  =  { C ,  D } ) )
28 eqeq2 2049 . . . . . 6  |-  ( x  =  D  ->  ( B  =  x  <->  B  =  D ) )
2927, 28imbi12d 223 . . . . 5  |-  ( x  =  D  ->  (
( { C ,  B }  =  { C ,  x }  ->  B  =  x )  <-> 
( { C ,  B }  =  { C ,  D }  ->  B  =  D ) ) )
30 vex 2560 . . . . . 6  |-  x  e. 
_V
312, 30preqr2 3540 . . . . 5  |-  ( { C ,  B }  =  { C ,  x }  ->  B  =  x )
3229, 31vtoclg 2613 . . . 4  |-  ( D  e.  _V  ->  ( { C ,  B }  =  { C ,  D }  ->  B  =  D ) )
339, 25, 32sylc 56 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  B  =  D )
343, 33jca 290 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( A  =  C  /\  B  =  D ) )
35 opeq12 3551 . 2  |-  ( ( A  =  C  /\  B  =  D )  -> 
<. A ,  B >.  = 
<. C ,  D >. )
3634, 35impbii 117 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   _Vcvv 2557   {csn 3375   {cpr 3376   <.cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  opthg  3975  otth2  3978  copsexg  3981  copsex4g  3984  opcom  3987  moop2  3988  opelopabsbALT  3996  opelopabsb  3997  ralxpf  4482  rexxpf  4483  cnvcnvsn  4797  funopg  4934  brabvv  5551  xpdom2  6305  enq0ref  6531  enq0tr  6532  mulnnnq0  6548  eqresr  6912  cnref1o  8582
  Copyright terms: Public domain W3C validator