Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opth | Unicode version |
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that and are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opth1.1 | |
opth1.2 |
Ref | Expression |
---|---|
opth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 | |
2 | opth1.2 | . . . 4 | |
3 | 1, 2 | opth1 3973 | . . 3 |
4 | 1, 2 | opi1 3969 | . . . . . . 7 |
5 | id 19 | . . . . . . 7 | |
6 | 4, 5 | syl5eleq 2126 | . . . . . 6 |
7 | oprcl 3573 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | simprd 107 | . . . 4 |
10 | 3 | opeq1d 3555 | . . . . . . . 8 |
11 | 10, 5 | eqtr3d 2074 | . . . . . . 7 |
12 | 8 | simpld 105 | . . . . . . . 8 |
13 | dfopg 3547 | . . . . . . . 8 | |
14 | 12, 2, 13 | sylancl 392 | . . . . . . 7 |
15 | 11, 14 | eqtr3d 2074 | . . . . . 6 |
16 | dfopg 3547 | . . . . . . 7 | |
17 | 8, 16 | syl 14 | . . . . . 6 |
18 | 15, 17 | eqtr3d 2074 | . . . . 5 |
19 | prexgOLD 3946 | . . . . . . 7 | |
20 | 12, 2, 19 | sylancl 392 | . . . . . 6 |
21 | prexgOLD 3946 | . . . . . . 7 | |
22 | 8, 21 | syl 14 | . . . . . 6 |
23 | preqr2g 3538 | . . . . . 6 | |
24 | 20, 22, 23 | syl2anc 391 | . . . . 5 |
25 | 18, 24 | mpd 13 | . . . 4 |
26 | preq2 3448 | . . . . . . 7 | |
27 | 26 | eqeq2d 2051 | . . . . . 6 |
28 | eqeq2 2049 | . . . . . 6 | |
29 | 27, 28 | imbi12d 223 | . . . . 5 |
30 | vex 2560 | . . . . . 6 | |
31 | 2, 30 | preqr2 3540 | . . . . 5 |
32 | 29, 31 | vtoclg 2613 | . . . 4 |
33 | 9, 25, 32 | sylc 56 | . . 3 |
34 | 3, 33 | jca 290 | . 2 |
35 | opeq12 3551 | . 2 | |
36 | 34, 35 | impbii 117 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wcel 1393 cvv 2557 csn 3375 cpr 3376 cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: opthg 3975 otth2 3978 copsexg 3981 copsex4g 3984 opcom 3987 moop2 3988 opelopabsbALT 3996 opelopabsb 3997 ralxpf 4482 rexxpf 4483 cnvcnvsn 4797 funopg 4934 brabvv 5551 xpdom2 6305 enq0ref 6531 enq0tr 6532 mulnnnq0 6548 eqresr 6912 cnref1o 8582 |
Copyright terms: Public domain | W3C validator |