ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopg Unicode version

Theorem funopg 4934
Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
funopg  |-  ( ( A  e.  V  /\  B  e.  W  /\  Fun  <. A ,  B >. )  ->  A  =  B )

Proof of Theorem funopg
Dummy variables  u  t  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3549 . . . . 5  |-  ( u  =  A  ->  <. u ,  t >.  =  <. A ,  t >. )
21funeqd 4923 . . . 4  |-  ( u  =  A  ->  ( Fun  <. u ,  t
>. 
<->  Fun  <. A ,  t
>. ) )
3 eqeq1 2046 . . . 4  |-  ( u  =  A  ->  (
u  =  t  <->  A  =  t ) )
42, 3imbi12d 223 . . 3  |-  ( u  =  A  ->  (
( Fun  <. u ,  t >.  ->  u  =  t )  <->  ( Fun  <. A ,  t >.  ->  A  =  t )
) )
5 opeq2 3550 . . . . 5  |-  ( t  =  B  ->  <. A , 
t >.  =  <. A ,  B >. )
65funeqd 4923 . . . 4  |-  ( t  =  B  ->  ( Fun  <. A ,  t
>. 
<->  Fun  <. A ,  B >. ) )
7 eqeq2 2049 . . . 4  |-  ( t  =  B  ->  ( A  =  t  <->  A  =  B ) )
86, 7imbi12d 223 . . 3  |-  ( t  =  B  ->  (
( Fun  <. A , 
t >.  ->  A  =  t )  <->  ( Fun  <. A ,  B >.  ->  A  =  B )
) )
9 funrel 4919 . . . . 5  |-  ( Fun 
<. u ,  t >.  ->  Rel  <. u ,  t
>. )
10 vex 2560 . . . . . 6  |-  u  e. 
_V
11 vex 2560 . . . . . 6  |-  t  e. 
_V
1210, 11relop 4486 . . . . 5  |-  ( Rel 
<. u ,  t >.  <->  E. x E. y ( u  =  { x }  /\  t  =  {
x ,  y } ) )
139, 12sylib 127 . . . 4  |-  ( Fun 
<. u ,  t >.  ->  E. x E. y
( u  =  {
x }  /\  t  =  { x ,  y } ) )
1410, 11opth 3974 . . . . . . . 8  |-  ( <.
u ,  t >.  =  <. { x } ,  { x ,  y } >.  <->  ( u  =  { x }  /\  t  =  { x ,  y } ) )
15 vex 2560 . . . . . . . . . . . 12  |-  x  e. 
_V
1615opid 3567 . . . . . . . . . . 11  |-  <. x ,  x >.  =  { { x } }
1716preq1i 3450 . . . . . . . . . 10  |-  { <. x ,  x >. ,  { { x } ,  { x ,  y } } }  =  { { { x } } ,  { { x } ,  { x ,  y } } }
18 vex 2560 . . . . . . . . . . . 12  |-  y  e. 
_V
1915, 18dfop 3548 . . . . . . . . . . 11  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
2019preq2i 3451 . . . . . . . . . 10  |-  { <. x ,  x >. ,  <. x ,  y >. }  =  { <. x ,  x >. ,  { { x } ,  { x ,  y } } }
21 snexgOLD 3935 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  { x }  e.  _V )
2215, 21ax-mp 7 . . . . . . . . . . 11  |-  { x }  e.  _V
23 zfpair2 3945 . . . . . . . . . . 11  |-  { x ,  y }  e.  _V
2422, 23dfop 3548 . . . . . . . . . 10  |-  <. { x } ,  { x ,  y } >.  =  { { { x } } ,  { {
x } ,  {
x ,  y } } }
2517, 20, 243eqtr4ri 2071 . . . . . . . . 9  |-  <. { x } ,  { x ,  y } >.  =  { <. x ,  x >. ,  <. x ,  y
>. }
2625eqeq2i 2050 . . . . . . . 8  |-  ( <.
u ,  t >.  =  <. { x } ,  { x ,  y } >.  <->  <. u ,  t
>.  =  { <. x ,  x >. ,  <. x ,  y >. } )
2714, 26bitr3i 175 . . . . . . 7  |-  ( ( u  =  { x }  /\  t  =  {
x ,  y } )  <->  <. u ,  t
>.  =  { <. x ,  x >. ,  <. x ,  y >. } )
28 dffun4 4913 . . . . . . . . 9  |-  ( Fun 
<. u ,  t >.  <->  ( Rel  <. u ,  t
>.  /\  A. z A. w A. v ( (
<. z ,  w >.  e. 
<. u ,  t >.  /\  <. z ,  v
>.  e.  <. u ,  t
>. )  ->  w  =  v ) ) )
2928simprbi 260 . . . . . . . 8  |-  ( Fun 
<. u ,  t >.  ->  A. z A. w A. v ( ( <.
z ,  w >.  e. 
<. u ,  t >.  /\  <. z ,  v
>.  e.  <. u ,  t
>. )  ->  w  =  v ) )
3015, 15opex 3966 . . . . . . . . . . 11  |-  <. x ,  x >.  e.  _V
3130prid1 3476 . . . . . . . . . 10  |-  <. x ,  x >.  e.  { <. x ,  x >. ,  <. x ,  y >. }
32 eleq2 2101 . . . . . . . . . 10  |-  ( <.
u ,  t >.  =  { <. x ,  x >. ,  <. x ,  y
>. }  ->  ( <. x ,  x >.  e.  <. u ,  t >.  <->  <. x ,  x >.  e.  { <. x ,  x >. ,  <. x ,  y >. } ) )
3331, 32mpbiri 157 . . . . . . . . 9  |-  ( <.
u ,  t >.  =  { <. x ,  x >. ,  <. x ,  y
>. }  ->  <. x ,  x >.  e.  <. u ,  t >. )
3415, 18opex 3966 . . . . . . . . . . 11  |-  <. x ,  y >.  e.  _V
3534prid2 3477 . . . . . . . . . 10  |-  <. x ,  y >.  e.  { <. x ,  x >. , 
<. x ,  y >. }
36 eleq2 2101 . . . . . . . . . 10  |-  ( <.
u ,  t >.  =  { <. x ,  x >. ,  <. x ,  y
>. }  ->  ( <. x ,  y >.  e.  <. u ,  t >.  <->  <. x ,  y >.  e.  { <. x ,  x >. ,  <. x ,  y >. } ) )
3735, 36mpbiri 157 . . . . . . . . 9  |-  ( <.
u ,  t >.  =  { <. x ,  x >. ,  <. x ,  y
>. }  ->  <. x ,  y >.  e.  <. u ,  t >. )
3833, 37jca 290 . . . . . . . 8  |-  ( <.
u ,  t >.  =  { <. x ,  x >. ,  <. x ,  y
>. }  ->  ( <. x ,  x >.  e.  <. u ,  t >.  /\  <. x ,  y >.  e.  <. u ,  t >. )
)
39 opeq12 3551 . . . . . . . . . . . . . 14  |-  ( ( z  =  x  /\  w  =  x )  -> 
<. z ,  w >.  = 
<. x ,  x >. )
40393adant3 924 . . . . . . . . . . . . 13  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  -> 
<. z ,  w >.  = 
<. x ,  x >. )
4140eleq1d 2106 . . . . . . . . . . . 12  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  ->  ( <. z ,  w >.  e.  <. u ,  t
>. 
<-> 
<. x ,  x >.  e. 
<. u ,  t >.
) )
42 opeq12 3551 . . . . . . . . . . . . . 14  |-  ( ( z  =  x  /\  v  =  y )  -> 
<. z ,  v >.  =  <. x ,  y
>. )
43423adant2 923 . . . . . . . . . . . . 13  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  -> 
<. z ,  v >.  =  <. x ,  y
>. )
4443eleq1d 2106 . . . . . . . . . . . 12  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  ->  ( <. z ,  v
>.  e.  <. u ,  t
>. 
<-> 
<. x ,  y >.  e.  <. u ,  t
>. ) )
4541, 44anbi12d 442 . . . . . . . . . . 11  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  ->  ( ( <. z ,  w >.  e.  <. u ,  t >.  /\  <. z ,  v >.  e.  <. u ,  t >. )  <->  (
<. x ,  x >.  e. 
<. u ,  t >.  /\  <. x ,  y
>.  e.  <. u ,  t
>. ) ) )
46 eqeq12 2052 . . . . . . . . . . . 12  |-  ( ( w  =  x  /\  v  =  y )  ->  ( w  =  v  <-> 
x  =  y ) )
47463adant1 922 . . . . . . . . . . 11  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  ->  ( w  =  v  <-> 
x  =  y ) )
4845, 47imbi12d 223 . . . . . . . . . 10  |-  ( ( z  =  x  /\  w  =  x  /\  v  =  y )  ->  ( ( ( <.
z ,  w >.  e. 
<. u ,  t >.  /\  <. z ,  v
>.  e.  <. u ,  t
>. )  ->  w  =  v )  <->  ( ( <. x ,  x >.  e. 
<. u ,  t >.  /\  <. x ,  y
>.  e.  <. u ,  t
>. )  ->  x  =  y ) ) )
4948spc3gv 2645 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  x  e.  _V  /\  y  e.  _V )  ->  ( A. z A. w A. v ( ( <.
z ,  w >.  e. 
<. u ,  t >.  /\  <. z ,  v
>.  e.  <. u ,  t
>. )  ->  w  =  v )  ->  (
( <. x ,  x >.  e.  <. u ,  t
>.  /\  <. x ,  y
>.  e.  <. u ,  t
>. )  ->  x  =  y ) ) )
5015, 15, 18, 49mp3an 1232 . . . . . . . 8  |-  ( A. z A. w A. v
( ( <. z ,  w >.  e.  <. u ,  t >.  /\  <. z ,  v >.  e.  <. u ,  t >. )  ->  w  =  v )  ->  ( ( <.
x ,  x >.  e. 
<. u ,  t >.  /\  <. x ,  y
>.  e.  <. u ,  t
>. )  ->  x  =  y ) )
5129, 38, 50syl2im 34 . . . . . . 7  |-  ( Fun 
<. u ,  t >.  ->  ( <. u ,  t
>.  =  { <. x ,  x >. ,  <. x ,  y >. }  ->  x  =  y ) )
5227, 51syl5bi 141 . . . . . 6  |-  ( Fun 
<. u ,  t >.  ->  ( ( u  =  { x }  /\  t  =  { x ,  y } )  ->  x  =  y ) )
53 dfsn2 3389 . . . . . . . . . . 11  |-  { x }  =  { x ,  x }
54 preq2 3448 . . . . . . . . . . 11  |-  ( x  =  y  ->  { x ,  x }  =  {
x ,  y } )
5553, 54syl5req 2085 . . . . . . . . . 10  |-  ( x  =  y  ->  { x ,  y }  =  { x } )
5655eqeq2d 2051 . . . . . . . . 9  |-  ( x  =  y  ->  (
t  =  { x ,  y }  <->  t  =  { x } ) )
57 eqtr3 2059 . . . . . . . . . 10  |-  ( ( u  =  { x }  /\  t  =  {
x } )  ->  u  =  t )
5857expcom 109 . . . . . . . . 9  |-  ( t  =  { x }  ->  ( u  =  {
x }  ->  u  =  t ) )
5956, 58syl6bi 152 . . . . . . . 8  |-  ( x  =  y  ->  (
t  =  { x ,  y }  ->  ( u  =  { x }  ->  u  =  t ) ) )
6059com13 74 . . . . . . 7  |-  ( u  =  { x }  ->  ( t  =  {
x ,  y }  ->  ( x  =  y  ->  u  =  t ) ) )
6160imp 115 . . . . . 6  |-  ( ( u  =  { x }  /\  t  =  {
x ,  y } )  ->  ( x  =  y  ->  u  =  t ) )
6252, 61sylcom 25 . . . . 5  |-  ( Fun 
<. u ,  t >.  ->  ( ( u  =  { x }  /\  t  =  { x ,  y } )  ->  u  =  t ) )
6362exlimdvv 1777 . . . 4  |-  ( Fun 
<. u ,  t >.  ->  ( E. x E. y ( u  =  { x }  /\  t  =  { x ,  y } )  ->  u  =  t ) )
6413, 63mpd 13 . . 3  |-  ( Fun 
<. u ,  t >.  ->  u  =  t )
654, 8, 64vtocl2g 2617 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Fun  <. A ,  B >.  ->  A  =  B ) )
66653impia 1101 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  Fun  <. A ,  B >. )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   {csn 3375   {cpr 3376   <.cop 3378   Rel wrel 4350   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator