![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5req | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl5req.1 |
![]() ![]() ![]() ![]() |
syl5req.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5req |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5req.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | syl5req.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5eq 2081 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqcomd 2042 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-4 1397 ax-17 1416 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-cleq 2030 |
This theorem is referenced by: syl5reqr 2084 opeqsn 3980 relop 4429 funopg 4877 funcnvres 4915 apreap 7371 recextlem1 7414 nn0supp 8010 |
Copyright terms: Public domain | W3C validator |