![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3 | Unicode version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2042 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr 2057 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan2b 271 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: eueq 2712 euind 2728 reuind 2744 preqsn 3546 eusv1 4184 funopg 4934 foco 5116 mpt2fun 5603 enq0tr 6532 lteupri 6715 elrealeu 6906 rereceu 6963 receuap 7650 xrltso 8717 xrlttri3 8718 |
Copyright terms: Public domain | W3C validator |