Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfop | Unicode version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
dfop.1 | |
dfop.2 |
Ref | Expression |
---|---|
dfop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 | |
2 | dfop.2 | . 2 | |
3 | dfopg 3547 | . 2 | |
4 | 1, 2, 3 | mp2an 402 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 wcel 1393 cvv 2557 csn 3375 cpr 3376 cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-v 2559 df-op 3384 |
This theorem is referenced by: opid 3567 elop 3968 opi1 3969 opi2 3970 opeqsn 3989 opeqpr 3990 uniop 3992 op1stb 4209 xpsspw 4450 relop 4486 funopg 4934 |
Copyright terms: Public domain | W3C validator |