ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopg GIF version

Theorem funopg 4934
Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
funopg ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)

Proof of Theorem funopg
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3549 . . . . 5 (𝑢 = 𝐴 → ⟨𝑢, 𝑡⟩ = ⟨𝐴, 𝑡⟩)
21funeqd 4923 . . . 4 (𝑢 = 𝐴 → (Fun ⟨𝑢, 𝑡⟩ ↔ Fun ⟨𝐴, 𝑡⟩))
3 eqeq1 2046 . . . 4 (𝑢 = 𝐴 → (𝑢 = 𝑡𝐴 = 𝑡))
42, 3imbi12d 223 . . 3 (𝑢 = 𝐴 → ((Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡) ↔ (Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡)))
5 opeq2 3550 . . . . 5 (𝑡 = 𝐵 → ⟨𝐴, 𝑡⟩ = ⟨𝐴, 𝐵⟩)
65funeqd 4923 . . . 4 (𝑡 = 𝐵 → (Fun ⟨𝐴, 𝑡⟩ ↔ Fun ⟨𝐴, 𝐵⟩))
7 eqeq2 2049 . . . 4 (𝑡 = 𝐵 → (𝐴 = 𝑡𝐴 = 𝐵))
86, 7imbi12d 223 . . 3 (𝑡 = 𝐵 → ((Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡) ↔ (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵)))
9 funrel 4919 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → Rel ⟨𝑢, 𝑡⟩)
10 vex 2560 . . . . . 6 𝑢 ∈ V
11 vex 2560 . . . . . 6 𝑡 ∈ V
1210, 11relop 4486 . . . . 5 (Rel ⟨𝑢, 𝑡⟩ ↔ ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
139, 12sylib 127 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
1410, 11opth 3974 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ (𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
15 vex 2560 . . . . . . . . . . . 12 𝑥 ∈ V
1615opid 3567 . . . . . . . . . . 11 𝑥, 𝑥⟩ = {{𝑥}}
1716preq1i 3450 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}} = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
18 vex 2560 . . . . . . . . . . . 12 𝑦 ∈ V
1915, 18dfop 3548 . . . . . . . . . . 11 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2019preq2i 3451 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} = {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}}
21 snexgOLD 3935 . . . . . . . . . . . 12 (𝑥 ∈ V → {𝑥} ∈ V)
2215, 21ax-mp 7 . . . . . . . . . . 11 {𝑥} ∈ V
23 zfpair2 3945 . . . . . . . . . . 11 {𝑥, 𝑦} ∈ V
2422, 23dfop 3548 . . . . . . . . . 10 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
2517, 20, 243eqtr4ri 2071 . . . . . . . . 9 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
2625eqeq2i 2050 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
2714, 26bitr3i 175 . . . . . . 7 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
28 dffun4 4913 . . . . . . . . 9 (Fun ⟨𝑢, 𝑡⟩ ↔ (Rel ⟨𝑢, 𝑡⟩ ∧ ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣)))
2928simprbi 260 . . . . . . . 8 (Fun ⟨𝑢, 𝑡⟩ → ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣))
3015, 15opex 3966 . . . . . . . . . . 11 𝑥, 𝑥⟩ ∈ V
3130prid1 3476 . . . . . . . . . 10 𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
32 eleq2 2101 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3331, 32mpbiri 157 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩)
3415, 18opex 3966 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
3534prid2 3477 . . . . . . . . . 10 𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
36 eleq2 2101 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3735, 36mpbiri 157 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)
3833, 37jca 290 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
39 opeq12 3551 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑤 = 𝑥) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
40393adant3 924 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
4140eleq1d 2106 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩))
42 opeq12 3551 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
43423adant2 923 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
4443eleq1d 2106 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
4541, 44anbi12d 442 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) ↔ (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)))
46 eqeq12 2052 . . . . . . . . . . . 12 ((𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
47463adant1 922 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
4845, 47imbi12d 223 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) ↔ ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4948spc3gv 2645 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
5015, 15, 18, 49mp3an 1232 . . . . . . . 8 (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦))
5129, 38, 50syl2im 34 . . . . . . 7 (Fun ⟨𝑢, 𝑡⟩ → (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → 𝑥 = 𝑦))
5227, 51syl5bi 141 . . . . . 6 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑥 = 𝑦))
53 dfsn2 3389 . . . . . . . . . . 11 {𝑥} = {𝑥, 𝑥}
54 preq2 3448 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥, 𝑥} = {𝑥, 𝑦})
5553, 54syl5req 2085 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥, 𝑦} = {𝑥})
5655eqeq2d 2051 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} ↔ 𝑡 = {𝑥}))
57 eqtr3 2059 . . . . . . . . . 10 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥}) → 𝑢 = 𝑡)
5857expcom 109 . . . . . . . . 9 (𝑡 = {𝑥} → (𝑢 = {𝑥} → 𝑢 = 𝑡))
5956, 58syl6bi 152 . . . . . . . 8 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} → (𝑢 = {𝑥} → 𝑢 = 𝑡)))
6059com13 74 . . . . . . 7 (𝑢 = {𝑥} → (𝑡 = {𝑥, 𝑦} → (𝑥 = 𝑦𝑢 = 𝑡)))
6160imp 115 . . . . . 6 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → (𝑥 = 𝑦𝑢 = 𝑡))
6252, 61sylcom 25 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6362exlimdvv 1777 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → (∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6413, 63mpd 13 . . 3 (Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡)
654, 8, 64vtocl2g 2617 . 2 ((𝐴𝑉𝐵𝑊) → (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵))
66653impia 1101 1 ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885  wal 1241   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  {csn 3375  {cpr 3376  cop 3378  Rel wrel 4350  Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator