Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snexgOLD | Unicode version |
Description: A singleton whose element exists is a set. The case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. This is a special case of snexg 3936 and new proofs should use snexg 3936 instead. (Contributed by Jim Kingdon, 26-Jan-2019.) (New usage is discouraged.) (Proof modification is discouraged.) TODO: replace its uses by uses of snexg 3936 and then remove it. |
Ref | Expression |
---|---|
snexgOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 3933 | . 2 | |
2 | snsspw 3535 | . . 3 | |
3 | ssexg 3896 | . . 3 | |
4 | 2, 3 | mpan 400 | . 2 |
5 | 1, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 1393 cvv 2557 wss 2917 cpw 3359 csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 |
This theorem is referenced by: snelpwi 3948 snelpw 3949 rext 3951 sspwb 3952 intid 3960 euabex 3961 mss 3962 exss 3963 opexgOLD 3965 opi1 3969 opm 3971 opeqsn 3989 opeqpr 3990 uniop 3992 snnex 4181 op1stb 4209 op1stbg 4210 sucexb 4223 dtruex 4283 relop 4486 elxp4 4808 elxp5 4809 funopg 4934 1stvalg 5769 2ndvalg 5770 fo1st 5784 fo2nd 5785 |
Copyright terms: Public domain | W3C validator |