Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intid | Unicode version |
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
Ref | Expression |
---|---|
intid.1 |
Ref | Expression |
---|---|
intid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intid.1 | . . . 4 | |
2 | snexgOLD 3935 | . . . 4 | |
3 | 1, 2 | ax-mp 7 | . . 3 |
4 | eleq2 2101 | . . . 4 | |
5 | 1 | snid 3402 | . . . 4 |
6 | 4, 5 | intmin3 3642 | . . 3 |
7 | 3, 6 | ax-mp 7 | . 2 |
8 | 1 | elintab 3626 | . . . 4 |
9 | id 19 | . . . 4 | |
10 | 8, 9 | mpgbir 1342 | . . 3 |
11 | snssi 3508 | . . 3 | |
12 | 10, 11 | ax-mp 7 | . 2 |
13 | 7, 12 | eqssi 2961 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 wcel 1393 cab 2026 cvv 2557 wss 2917 csn 3375 cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-int 3616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |