ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb Unicode version

Theorem sspwb 3943
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb 
C_  ~P  C_ 
~P

Proof of Theorem sspwb
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sstr2 2946 . . . . 5 
C_  C_  C_
21com12 27 . . . 4 
C_  C_  C_
3 vex 2554 . . . . 5 
_V
43elpw 3357 . . . 4  ~P  C_
53elpw 3357 . . . 4  ~P  C_
62, 4, 53imtr4g 194 . . 3 
C_  ~P  ~P
76ssrdv 2945 . 2 
C_  ~P  C_  ~P
8 ssel 2933 . . . 4  ~P  C_  ~P  { }  ~P  { }  ~P
9 snexgOLD 3926 . . . . . . 7  _V  { }  _V
103, 9ax-mp 7 . . . . . 6  { }  _V
1110elpw 3357 . . . . 5  { }  ~P  { }  C_
123snss 3485 . . . . 5  { }  C_
1311, 12bitr4i 176 . . . 4  { }  ~P
1410elpw 3357 . . . . 5  { }  ~P  { }  C_
153snss 3485 . . . . 5  { }  C_
1614, 15bitr4i 176 . . . 4  { }  ~P
178, 13, 163imtr3g 193 . . 3  ~P  C_  ~P
1817ssrdv 2945 . 2  ~P  C_  ~P  C_
197, 18impbii 117 1 
C_  ~P  C_ 
~P
Colors of variables: wff set class
Syntax hints:   wb 98   wcel 1390   _Vcvv 2551    C_ wss 2911   ~Pcpw 3351   {csn 3367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373
This theorem is referenced by:  pwel  3945  ssextss  3947  pweqb  3950
  Copyright terms: Public domain W3C validator