ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb Unicode version

Theorem sspwb 3952
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )

Proof of Theorem sspwb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 2952 . . . . 5  |-  ( x 
C_  A  ->  ( A  C_  B  ->  x  C_  B ) )
21com12 27 . . . 4  |-  ( A 
C_  B  ->  (
x  C_  A  ->  x 
C_  B ) )
3 vex 2560 . . . . 5  |-  x  e. 
_V
43elpw 3365 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3365 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
62, 4, 53imtr4g 194 . . 3  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
76ssrdv 2951 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
8 ssel 2939 . . . 4  |-  ( ~P A  C_  ~P B  ->  ( { x }  e.  ~P A  ->  { x }  e.  ~P B
) )
9 snexgOLD 3935 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  _V )
103, 9ax-mp 7 . . . . . 6  |-  { x }  e.  _V
1110elpw 3365 . . . . 5  |-  ( { x }  e.  ~P A 
<->  { x }  C_  A )
123snss 3494 . . . . 5  |-  ( x  e.  A  <->  { x }  C_  A )
1311, 12bitr4i 176 . . . 4  |-  ( { x }  e.  ~P A 
<->  x  e.  A )
1410elpw 3365 . . . . 5  |-  ( { x }  e.  ~P B 
<->  { x }  C_  B )
153snss 3494 . . . . 5  |-  ( x  e.  B  <->  { x }  C_  B )
1614, 15bitr4i 176 . . . 4  |-  ( { x }  e.  ~P B 
<->  x  e.  B )
178, 13, 163imtr3g 193 . . 3  |-  ( ~P A  C_  ~P B  ->  ( x  e.  A  ->  x  e.  B ) )
1817ssrdv 2951 . 2  |-  ( ~P A  C_  ~P B  ->  A  C_  B )
197, 18impbii 117 1  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    e. wcel 1393   _Vcvv 2557    C_ wss 2917   ~Pcpw 3359   {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381
This theorem is referenced by:  pwel  3954  ssextss  3956  pweqb  3959
  Copyright terms: Public domain W3C validator