Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeqpr | Unicode version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqpr.1 | |
opeqpr.2 | |
opeqpr.3 | |
opeqpr.4 |
Ref | Expression |
---|---|
opeqpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2042 | . 2 | |
2 | opeqpr.1 | . . . 4 | |
3 | opeqpr.2 | . . . 4 | |
4 | 2, 3 | dfop 3548 | . . 3 |
5 | 4 | eqeq2i 2050 | . 2 |
6 | opeqpr.3 | . . 3 | |
7 | opeqpr.4 | . . 3 | |
8 | snexgOLD 3935 | . . . 4 | |
9 | 2, 8 | ax-mp 7 | . . 3 |
10 | prexgOLD 3946 | . . . 4 | |
11 | 2, 3, 10 | mp2an 402 | . . 3 |
12 | 6, 7, 9, 11 | preq12b 3541 | . 2 |
13 | 1, 5, 12 | 3bitri 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 wo 629 wceq 1243 wcel 1393 cvv 2557 csn 3375 cpr 3376 cop 3378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 |
This theorem is referenced by: relop 4486 |
Copyright terms: Public domain | W3C validator |