Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dtruex | Unicode version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 3942 can also be summarized as "at least two sets exist", the difference is that dtruarb 3942 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific , we can construct a set which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtruex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . . 5 | |
2 | snexgOLD 3935 | . . . . 5 | |
3 | 1, 2 | ax-mp 7 | . . . 4 |
4 | isset 2561 | . . . 4 | |
5 | 3, 4 | mpbi 133 | . . 3 |
6 | elirr 4266 | . . . . . . . 8 | |
7 | vsnid 3403 | . . . . . . . . 9 | |
8 | eleq2 2101 | . . . . . . . . 9 | |
9 | 7, 8 | mpbiri 157 | . . . . . . . 8 |
10 | 6, 9 | mto 588 | . . . . . . 7 |
11 | eqtr 2057 | . . . . . . 7 | |
12 | 10, 11 | mto 588 | . . . . . 6 |
13 | ancom 253 | . . . . . 6 | |
14 | 12, 13 | mtbi 595 | . . . . 5 |
15 | 14 | imnani 625 | . . . 4 |
16 | 15 | eximi 1491 | . . 3 |
17 | 5, 16 | ax-mp 7 | . 2 |
18 | eqcom 2042 | . . . 4 | |
19 | 18 | notbii 594 | . . 3 |
20 | 19 | exbii 1496 | . 2 |
21 | 17, 20 | mpbi 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 97 wceq 1243 wex 1381 wcel 1393 cvv 2557 csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 |
This theorem is referenced by: dtru 4284 eunex 4285 brprcneu 5171 |
Copyright terms: Public domain | W3C validator |