Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnex | Unicode version |
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
Ref | Expression |
---|---|
snnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 3888 | . . . 4 | |
2 | vex 2560 | . . . . . . . . . 10 | |
3 | 2 | snid 3402 | . . . . . . . . 9 |
4 | a9ev 1587 | . . . . . . . . . 10 | |
5 | sneq 3386 | . . . . . . . . . . 11 | |
6 | 5 | equcoms 1594 | . . . . . . . . . 10 |
7 | 4, 6 | eximii 1493 | . . . . . . . . 9 |
8 | snexgOLD 3935 | . . . . . . . . . . 11 | |
9 | 2, 8 | ax-mp 7 | . . . . . . . . . 10 |
10 | eleq2 2101 | . . . . . . . . . . 11 | |
11 | eqeq1 2046 | . . . . . . . . . . . 12 | |
12 | 11 | exbidv 1706 | . . . . . . . . . . 11 |
13 | 10, 12 | anbi12d 442 | . . . . . . . . . 10 |
14 | 9, 13 | spcev 2647 | . . . . . . . . 9 |
15 | 3, 7, 14 | mp2an 402 | . . . . . . . 8 |
16 | eluniab 3592 | . . . . . . . 8 | |
17 | 15, 16 | mpbir 134 | . . . . . . 7 |
18 | 17, 2 | 2th 163 | . . . . . 6 |
19 | 18 | eqriv 2037 | . . . . 5 |
20 | 19 | eleq1i 2103 | . . . 4 |
21 | 1, 20 | mtbir 596 | . . 3 |
22 | uniexg 4175 | . . 3 | |
23 | 21, 22 | mto 588 | . 2 |
24 | 23 | nelir 2300 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wceq 1243 wex 1381 wcel 1393 cab 2026 wnel 2205 cvv 2557 csn 3375 cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-nel 2207 df-rex 2312 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-uni 3581 |
This theorem is referenced by: fiprc 6292 |
Copyright terms: Public domain | W3C validator |