Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brabvv | Unicode version |
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.) |
Ref | Expression |
---|---|
brabvv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3765 | . . . . . 6 | |
2 | elopab 3995 | . . . . . 6 | |
3 | 1, 2 | bitri 173 | . . . . 5 |
4 | exsimpl 1508 | . . . . . 6 | |
5 | 4 | eximi 1491 | . . . . 5 |
6 | 3, 5 | sylbi 114 | . . . 4 |
7 | vex 2560 | . . . . . . . 8 | |
8 | vex 2560 | . . . . . . . 8 | |
9 | 7, 8 | opth 3974 | . . . . . . 7 |
10 | 9 | biimpi 113 | . . . . . 6 |
11 | 10 | eqcoms 2043 | . . . . 5 |
12 | 11 | 2eximi 1492 | . . . 4 |
13 | 6, 12 | syl 14 | . . 3 |
14 | eeanv 1807 | . . 3 | |
15 | 13, 14 | sylib 127 | . 2 |
16 | isset 2561 | . . 3 | |
17 | isset 2561 | . . 3 | |
18 | 16, 17 | anbi12i 433 | . 2 |
19 | 15, 18 | sylibr 137 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wex 1381 wcel 1393 cvv 2557 cop 3378 class class class wbr 3764 copab 3817 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |