Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anbi12i | Unicode version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | |
anbi12.2 |
Ref | Expression |
---|---|
anbi12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 | |
2 | 1 | anbi1i 431 | . 2 |
3 | anbi12.2 | . . 3 | |
4 | 3 | anbi2i 430 | . 2 |
5 | 2, 4 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: anbi12ci 434 ordir 730 orddi 733 dcan 842 3anbi123i 1093 an6 1216 xorcom 1279 trubifal 1307 truxortru 1310 truxorfal 1311 falxortru 1312 falxorfal 1313 nford 1459 nfand 1460 sbequ8 1727 sbanv 1769 sban 1829 sbbi 1833 sbnf2 1857 eu1 1925 2exeu 1992 2eu4 1993 sbabel 2203 neanior 2292 rexeqbii 2337 r19.26m 2444 reean 2478 reu5 2522 reu2 2729 reu3 2731 eqss 2960 unss 3117 ralunb 3124 ssin 3159 undi 3185 difundi 3189 indifdir 3193 inab 3205 difab 3206 reuss2 3217 reupick 3221 raaan 3327 prss 3520 tpss 3529 prsspw 3536 prneimg 3545 uniin 3600 intun 3646 intpr 3647 brin 3811 brdif 3812 ssext 3957 pweqb 3959 opthg2 3976 copsex4g 3984 opelopabsb 3997 eqopab2b 4016 pwin 4019 pofun 4049 wetrep 4097 ordwe 4300 wessep 4302 reg3exmidlemwe 4303 elxp3 4394 soinxp 4410 relun 4454 inopab 4468 difopab 4469 inxp 4470 opelco2g 4503 cnvco 4520 dmin 4543 intasym 4709 asymref 4710 cnvdif 4730 xpm 4745 xp11m 4759 dfco2 4820 relssdmrn 4841 cnvpom 4860 xpcom 4864 dffun4 4913 dffun4f 4918 funun 4944 funcnveq 4962 fun11 4966 fununi 4967 imadif 4979 imainlem 4980 imain 4981 fnres 5015 fnopabg 5022 fun 5063 fin 5076 dff1o2 5131 brprcneu 5171 fsn 5335 dff1o6 5416 isotr 5456 brabvv 5551 eqoprab2b 5563 dfoprab3 5817 poxp 5853 brtpos2 5866 tfrlem7 5933 dfer2 6107 eqer 6138 iinerm 6178 brecop 6196 eroveu 6197 erovlem 6198 oviec 6212 xpcomco 6300 xpassen 6304 dfmq0qs 6527 dfplq0qs 6528 enq0enq 6529 enq0tr 6532 npsspw 6569 nqprdisj 6642 ltnqpr 6691 ltnqpri 6692 ltexprlemdisj 6704 addcanprg 6714 recexprlemdisj 6728 caucvgprprlemval 6786 addsrpr 6830 mulsrpr 6831 mulgt0sr 6862 addcnsr 6910 mulcnsr 6911 ltresr 6915 addvalex 6920 axcnre 6955 xrnemnf 8699 xrnepnf 8700 elfzuzb 8884 fzass4 8925 |
Copyright terms: Public domain | W3C validator |