ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrpr Unicode version

Theorem addsrpr 6830
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
addsrpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )

Proof of Theorem addsrpr
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4376 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
2 enrex 6822 . . . . 5  |-  ~R  e.  _V
32ecelqsi 6160 . . . 4  |-  ( <. A ,  B >.  e.  ( P.  X.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
41, 3syl 14 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
5 opelxpi 4376 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  -> 
<. C ,  D >.  e.  ( P.  X.  P. ) )
62ecelqsi 6160 . . . 4  |-  ( <. C ,  D >.  e.  ( P.  X.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
75, 6syl 14 . . 3  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
84, 7anim12i 321 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
9 eqid 2040 . . . 4  |-  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R
10 eqid 2040 . . . 4  |-  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R
119, 10pm3.2i 257 . . 3  |-  ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
12 eqid 2040 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R
13 opeq12 3551 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6142 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. A ,  B >. ]  ~R  )
1514eqeq2d 2051 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  ) )
1615anbi1d 438 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
17 simpl 102 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5527 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  +P.  C
)  =  ( A  +P.  C ) )
19 simpr 103 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5527 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  +P.  D
)  =  ( B  +P.  D ) )
2118, 20opeq12d 3557 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( w  +P.  C
) ,  ( v  +P.  D ) >.  =  <. ( A  +P.  C ) ,  ( B  +P.  D ) >.
)
2221eceq1d 6142 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
2322eqeq2d 2051 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
)
2416, 23anbi12d 442 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  ) ) )
2524spc2egv 2642 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
26 opeq12 3551 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
2726eceq1d 6142 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
2827eqeq2d 2051 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
2928anbi2d 437 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
30 simpl 102 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3130oveq2d 5528 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  +P.  u
)  =  ( w  +P.  C ) )
32 simpr 103 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3332oveq2d 5528 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  +P.  t
)  =  ( v  +P.  D ) )
3431, 33opeq12d 3557 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( w  +P.  u
) ,  ( v  +P.  t ) >.  =  <. ( w  +P.  C ) ,  ( v  +P.  D ) >.
)
3534eceq1d 6142 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  =  [ <. ( w  +P.  C
) ,  ( v  +P.  D ) >. ]  ~R  )
3635eqeq2d 2051 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) )
3729, 36anbi12d 442 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
3837spc2egv 2642 . . . . 5  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
39382eximdv 1762 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
4025, 39sylan9 389 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( (
( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
4111, 12, 40mp2ani 408 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
42 ecexg 6110 . . . 4  |-  (  ~R  e.  _V  ->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  e.  _V )
432, 42ax-mp 7 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  e.  _V
44 simp1 904 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  x  =  [ <. A ,  B >. ]  ~R  )
4544eqeq1d 2048 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( x  =  [ <. w ,  v >. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  ) )
46 simp2 905 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  y  =  [ <. C ,  D >. ]  ~R  )
4746eqeq1d 2048 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( y  =  [ <. u ,  t >. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) )
4845, 47anbi12d 442 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  <->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) ) )
49 simp3 906 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
5049eqeq1d 2048 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
5148, 50anbi12d 442 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  )  /\  [
<. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
52514exbidv 1750 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
53 addsrmo 6828 . . . 4  |-  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
54 df-plr 6813 . . . . 5  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
55 df-nr 6812 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5655eleq2i 2104 . . . . . . . 8  |-  ( x  e.  R.  <->  x  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5755eleq2i 2104 . . . . . . . 8  |-  ( y  e.  R.  <->  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5856, 57anbi12i 433 . . . . . . 7  |-  ( ( x  e.  R.  /\  y  e.  R. )  <->  ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
) )
5958anbi1i 431 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  <->  ( (
x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
6059oprabbii 5560 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6154, 60eqtri 2060 . . . 4  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6252, 53, 61ovig 5622 . . 3  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  e.  _V )  ->  ( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
6343, 62mp3an3 1221 . 2  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
648, 41, 63sylc 56 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   <.cop 3378    X. cxp 4343  (class class class)co 5512   {coprab 5513   [cec 6104   /.cqs 6105   P.cnp 6389    +P. cpp 6391    ~R cer 6394   R.cnr 6395    +R cplr 6399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-enr 6811  df-nr 6812  df-plr 6813
This theorem is referenced by:  addclsr  6838  addcomsrg  6840  addasssrg  6841  distrsrg  6844  m1p1sr  6845  0idsr  6852  ltasrg  6855  prsradd  6870  pitonnlem2  6923
  Copyright terms: Public domain W3C validator