![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelxpi | Unicode version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4374 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 df-xp 4351 |
This theorem is referenced by: opelvvg 4389 opelvv 4390 opbrop 4419 fliftrel 5432 fnotovb 5548 ovi3 5637 ovres 5640 fovrn 5643 fnovrn 5648 ovconst2 5652 oprab2co 5839 1stconst 5842 2ndconst 5843 brdifun 6133 ecopqsi 6161 brecop 6196 th3q 6211 xpcomco 6300 addpiord 6414 mulpiord 6415 enqeceq 6457 1nq 6464 addpipqqslem 6467 mulpipq 6470 mulpipqqs 6471 addclnq 6473 mulclnq 6474 recexnq 6488 ltexnqq 6506 prarloclemarch 6516 prarloclemarch2 6517 nnnq 6520 enq0breq 6534 enq0eceq 6535 nqnq0 6539 addnnnq0 6547 mulnnnq0 6548 addclnq0 6549 mulclnq0 6550 nqpnq0nq 6551 prarloclemlt 6591 prarloclemlo 6592 prarloclemcalc 6600 genpelxp 6609 nqprm 6640 ltexprlempr 6706 recexprlempr 6730 cauappcvgprlemcl 6751 cauappcvgprlemladd 6756 caucvgprlemcl 6774 caucvgprprlemcl 6802 enreceq 6821 addsrpr 6830 mulsrpr 6831 0r 6835 1sr 6836 m1r 6837 addclsr 6838 mulclsr 6839 prsrcl 6868 addcnsr 6910 mulcnsr 6911 addcnsrec 6918 mulcnsrec 6919 pitonnlem2 6923 pitonn 6924 pitore 6926 recnnre 6927 axaddcl 6940 axmulcl 6942 xrlenlt 7084 cnrecnv 9510 |
Copyright terms: Public domain | W3C validator |