ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 Unicode version

Theorem pitonnlem2 6923
Description: Lemma for pitonn 6924. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Distinct variable group:    K, l, u

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 6897 . . . 4  |-  1  =  <. 1R ,  0R >.
21oveq2i 5523 . . 3  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  ( <. [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )
3 nnprlu 6651 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
4 1pr 6652 . . . . . . . 8  |-  1P  e.  P.
5 addclpr 6635 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
63, 4, 5sylancl 392 . . . . . . 7  |-  ( K  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
7 opelxpi 4376 . . . . . . 7  |-  ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
86, 4, 7sylancl 392 . . . . . 6  |-  ( K  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
9 enrex 6822 . . . . . . 7  |-  ~R  e.  _V
109ecelqsi 6160 . . . . . 6  |-  ( <.
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
118, 10syl 14 . . . . 5  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
12 df-nr 6812 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
1311, 12syl6eleqr 2131 . . . 4  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
14 1sr 6836 . . . 4  |-  1R  e.  R.
15 addresr 6913 . . . 4  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R.  /\  1R  e.  R. )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
1613, 14, 15sylancl 392 . . 3  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
172, 16syl5eq 2084 . 2  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. ( [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
18 pitonnlem1p1 6922 . . . . 5  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  ->  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  1P ) ,  1P >. ]  ~R  )
196, 18syl 14 . . . 4  |-  ( K  e.  N.  ->  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  1P ) ,  1P >. ]  ~R  )
20 df-1r 6817 . . . . . 6  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2120oveq2i 5523 . . . . 5  |-  ( [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
22 addclpr 6635 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
234, 4, 22mp2an 402 . . . . . . 7  |-  ( 1P 
+P.  1P )  e.  P.
24 addsrpr 6830 . . . . . . . 8  |-  ( ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  (
( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
254, 24mpanl2 411 . . . . . . 7  |-  ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  ( ( 1P  +P.  1P )  e. 
P.  /\  1P  e.  P. ) )  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
2623, 4, 25mpanr12 415 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  ->  ( [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
276, 26syl 14 . . . . 5  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
2821, 27syl5eq 2084 . . . 4  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
29 addpinq1 6562 . . . . . . . . . . 11  |-  ( K  e.  N.  ->  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) )
3029breq2d 3776 . . . . . . . . . 10  |-  ( K  e.  N.  ->  (
l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <->  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) ) )
3130abbidv 2155 . . . . . . . . 9  |-  ( K  e.  N.  ->  { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } )
3229breq1d 3774 . . . . . . . . . 10  |-  ( K  e.  N.  ->  ( [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u  <->  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) 
<Q  u ) )
3332abbidv 2155 . . . . . . . . 9  |-  ( K  e.  N.  ->  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u }  =  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } )
3431, 33opeq12d 3557 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } >. )
35 nnnq 6520 . . . . . . . . 9  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
36 addnqpr1 6660 . . . . . . . . 9  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  <. { l  |  l 
<Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  {
u  |  ( [
<. K ,  1o >. ]  ~Q  +Q  1Q ) 
<Q  u } >.  =  (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
3735, 36syl 14 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
3834, 37eqtrd 2072 . . . . . . 7  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
3938oveq1d 5527 . . . . . 6  |-  ( K  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) )
4039opeq1d 3555 . . . . 5  |-  ( K  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) ,  1P >. )
4140eceq1d 6142 . . . 4  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) ,  1P >. ]  ~R  )
4219, 28, 413eqtr4d 2082 . . 3  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  [ <. ( <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
4342opeq1d 3555 . 2  |-  ( K  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >.  = 
<. [ <. ( <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
4417, 43eqtrd 2072 1  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   {cab 2026   <.cop 3378   class class class wbr 3764    X. cxp 4343  (class class class)co 5512   1oc1o 5994   [cec 6104   /.cqs 6105   N.cnpi 6370    +N cpli 6371    ~Q ceq 6377   Q.cnq 6378   1Qc1q 6379    +Q cplq 6380    <Q cltq 6383   P.cnp 6389   1Pc1p 6390    +P. cpp 6391    ~R cer 6394   R.cnr 6395   0Rc0r 6396   1Rc1r 6397    +R cplr 6399   1c1 6890    + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-enr 6811  df-nr 6812  df-plr 6813  df-0r 6816  df-1r 6817  df-c 6895  df-1 6897  df-add 6900
This theorem is referenced by:  pitonn  6924  nntopi  6968
  Copyright terms: Public domain W3C validator