![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecelqsi | Unicode version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ecelqsi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | ecelqsg 6159 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan 400 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-ec 6108 df-qs 6112 |
This theorem is referenced by: ecopqsi 6161 th3q 6211 1nq 6464 addclnq 6473 mulclnq 6474 recexnq 6488 ltexnqq 6506 prarloclemarch 6516 prarloclemarch2 6517 nnnq 6520 nqnq0 6539 addnnnq0 6547 mulnnnq0 6548 addclnq0 6549 mulclnq0 6550 nqpnq0nq 6551 prarloclemlt 6591 prarloclemlo 6592 prarloclemcalc 6600 nqprm 6640 addsrpr 6830 mulsrpr 6831 0r 6835 1sr 6836 m1r 6837 addclsr 6838 mulclsr 6839 prsrcl 6868 pitonnlem2 6923 pitonn 6924 pitore 6926 recnnre 6927 |
Copyright terms: Public domain | W3C validator |