ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soinxp Unicode version

Theorem soinxp 4410
Description: Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp  |-  ( R  Or  A  <->  ( R  i^i  ( A  X.  A
) )  Or  A
)

Proof of Theorem soinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 4409 . . 3  |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A
) )  Po  A
)
2 brinxp 4408 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
323adant3 924 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
4 brinxp 4408 . . . . . . . . 9  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
543adant2 923 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( x R z  <-> 
x ( R  i^i  ( A  X.  A
) ) z ) )
6 brinxp 4408 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  y  e.  A )  ->  ( z R y  <-> 
z ( R  i^i  ( A  X.  A
) ) y ) )
76ancoms 255 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( z R y  <-> 
z ( R  i^i  ( A  X.  A
) ) y ) )
873adant1 922 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( z R y  <-> 
z ( R  i^i  ( A  X.  A
) ) y ) )
95, 8orbi12d 707 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R z  \/  z R y )  <->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) )
103, 9imbi12d 223 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  ->  ( x R z  \/  z R y ) )  <-> 
( x ( R  i^i  ( A  X.  A ) ) y  ->  ( x ( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
11103expb 1105 . . . . 5  |-  ( ( x  e.  A  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
12112ralbidva 2346 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  <->  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
1312ralbiia 2338 . . 3  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) )
141, 13anbi12i 433 . 2  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )  <->  ( ( R  i^i  ( A  X.  A ) )  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
15 df-iso 4034 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
16 df-iso 4034 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  Or  A  <->  ( ( R  i^i  ( A  X.  A ) )  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x
( R  i^i  ( A  X.  A ) ) y  ->  ( x
( R  i^i  ( A  X.  A ) ) z  \/  z ( R  i^i  ( A  X.  A ) ) y ) ) ) )
1714, 15, 163bitr4i 201 1  |-  ( R  Or  A  <->  ( R  i^i  ( A  X.  A
) )  Or  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885    e. wcel 1393   A.wral 2306    i^i cin 2916   class class class wbr 3764    Po wpo 4031    Or wor 4032    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-po 4033  df-iso 4034  df-xp 4351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator