Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwin | Unicode version |
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin 3159 | . . . 4 | |
2 | vex 2560 | . . . . . 6 | |
3 | 2 | elpw 3365 | . . . . 5 |
4 | 2 | elpw 3365 | . . . . 5 |
5 | 3, 4 | anbi12i 433 | . . . 4 |
6 | 2 | elpw 3365 | . . . 4 |
7 | 1, 5, 6 | 3bitr4i 201 | . . 3 |
8 | 7 | ineqri 3130 | . 2 |
9 | 8 | eqcomi 2044 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wceq 1243 wcel 1393 cin 2916 wss 2917 cpw 3359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |