Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difopab | Unicode version |
Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
difopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4464 | . . 3 | |
2 | reldif 4457 | . . 3 | |
3 | 1, 2 | ax-mp 7 | . 2 |
4 | relopab 4464 | . 2 | |
5 | sbcan 2805 | . . . 4 | |
6 | sbcan 2805 | . . . . 5 | |
7 | 6 | sbcbii 2818 | . . . 4 |
8 | opelopabsb 3997 | . . . . 5 | |
9 | vex 2560 | . . . . . . 7 | |
10 | sbcng 2803 | . . . . . . 7 | |
11 | 9, 10 | ax-mp 7 | . . . . . 6 |
12 | vex 2560 | . . . . . . . 8 | |
13 | sbcng 2803 | . . . . . . . 8 | |
14 | 12, 13 | ax-mp 7 | . . . . . . 7 |
15 | 14 | sbcbii 2818 | . . . . . 6 |
16 | opelopabsb 3997 | . . . . . . 7 | |
17 | 16 | notbii 594 | . . . . . 6 |
18 | 11, 15, 17 | 3bitr4ri 202 | . . . . 5 |
19 | 8, 18 | anbi12i 433 | . . . 4 |
20 | 5, 7, 19 | 3bitr4ri 202 | . . 3 |
21 | eldif 2927 | . . 3 | |
22 | opelopabsb 3997 | . . 3 | |
23 | 20, 21, 22 | 3bitr4i 201 | . 2 |
24 | 3, 4, 23 | eqrelriiv 4434 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 97 wb 98 wceq 1243 wcel 1393 cvv 2557 wsbc 2764 cdif 2914 cop 3378 copab 3817 wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 df-xp 4351 df-rel 4352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |