ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu1 Unicode version

Theorem eu1 1925
Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
Hypothesis
Ref Expression
eu1.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
eu1  |-  ( E! x ph  <->  E. x
( ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eu1
StepHypRef Expression
1 hbs1 1814 . . 3  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
21euf 1905 . 2  |-  ( E! y [ y  /  x ] ph  <->  E. x A. y ( [ y  /  x ] ph  <->  y  =  x ) )
3 eu1.1 . . 3  |-  ( ph  ->  A. y ph )
43sb8euh 1923 . 2  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
5 equcom 1593 . . . . . . 7  |-  ( x  =  y  <->  y  =  x )
65imbi2i 215 . . . . . 6  |-  ( ( [ y  /  x ] ph  ->  x  =  y )  <->  ( [
y  /  x ] ph  ->  y  =  x ) )
76albii 1359 . . . . 5  |-  ( A. y ( [ y  /  x ] ph  ->  x  =  y )  <->  A. y ( [ y  /  x ] ph  ->  y  =  x ) )
83sb6rf 1733 . . . . 5  |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
)
97, 8anbi12i 433 . . . 4  |-  ( ( A. y ( [ y  /  x ] ph  ->  x  =  y )  /\  ph )  <->  ( A. y ( [ y  /  x ] ph  ->  y  =  x )  /\  A. y
( y  =  x  ->  [ y  /  x ] ph ) ) )
10 ancom 253 . . . 4  |-  ( (
ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) )  <-> 
( A. y ( [ y  /  x ] ph  ->  x  =  y )  /\  ph ) )
11 albiim 1376 . . . 4  |-  ( A. y ( [ y  /  x ] ph  <->  y  =  x )  <->  ( A. y ( [ y  /  x ] ph  ->  y  =  x )  /\  A. y ( y  =  x  ->  [ y  /  x ] ph ) ) )
129, 10, 113bitr4i 201 . . 3  |-  ( (
ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) )  <->  A. y ( [ y  /  x ] ph  <->  y  =  x ) )
1312exbii 1496 . 2  |-  ( E. x ( ph  /\  A. y ( [ y  /  x ] ph  ->  x  =  y ) )  <->  E. x A. y
( [ y  /  x ] ph  <->  y  =  x ) )
142, 4, 133bitr4i 201 1  |-  ( E! x ph  <->  E. x
( ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241   E.wex 1381   [wsb 1645   E!weu 1900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903
This theorem is referenced by:  euex  1930  eu2  1944
  Copyright terms: Public domain W3C validator