Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intasym | Unicode version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4703 | . . 3 | |
2 | relin2 4456 | . . 3 | |
3 | ssrel 4428 | . . 3 | |
4 | 1, 2, 3 | mp2b 8 | . 2 |
5 | elin 3126 | . . . . 5 | |
6 | df-br 3765 | . . . . . 6 | |
7 | vex 2560 | . . . . . . . 8 | |
8 | vex 2560 | . . . . . . . 8 | |
9 | 7, 8 | brcnv 4518 | . . . . . . 7 |
10 | df-br 3765 | . . . . . . 7 | |
11 | 9, 10 | bitr3i 175 | . . . . . 6 |
12 | 6, 11 | anbi12i 433 | . . . . 5 |
13 | 5, 12 | bitr4i 176 | . . . 4 |
14 | df-br 3765 | . . . . 5 | |
15 | 8 | ideq 4488 | . . . . 5 |
16 | 14, 15 | bitr3i 175 | . . . 4 |
17 | 13, 16 | imbi12i 228 | . . 3 |
18 | 17 | 2albii 1360 | . 2 |
19 | 4, 18 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wcel 1393 cin 2916 wss 2917 cop 3378 class class class wbr 3764 cid 4025 ccnv 4344 wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |