Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 |
Ref | Expression |
---|---|
2albii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 | |
2 | 1 | albii 1359 | . 2 |
3 | 2 | albii 1359 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: mor 1942 mo4f 1960 moanim 1974 2eu4 1993 ralcomf 2471 raliunxp 4477 cnvsym 4708 intasym 4709 intirr 4711 codir 4713 qfto 4714 dffun4 4913 dffun4f 4918 funcnveq 4962 fun11 4966 fununi 4967 mpt22eqb 5610 addnq0mo 6545 mulnq0mo 6546 addsrmo 6828 mulsrmo 6829 |
Copyright terms: Public domain | W3C validator |