ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnv Structured version   Unicode version

Theorem relcnv 4646
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
relcnv  Rel  `'

Proof of Theorem relcnv
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4296 . 2  `'  { <. , 
>.  |  }
21relopabi 4406 1  Rel  `'
Colors of variables: wff set class
Syntax hints:   class class class wbr 3755   `'ccnv 4287   Rel wrel 4293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-opab 3810  df-xp 4294  df-rel 4295  df-cnv 4296
This theorem is referenced by:  relbrcnvg  4647  cnvsym  4651  intasym  4652  asymref  4653  cnvopab  4669  cnv0  4670  cnvdif  4673  dfrel2  4714  cnvcnv  4716  cnvsn0  4732  cnvcnvsn  4740  resdm2  4754  coi2  4780  coires1  4781  cnvssrndm  4785  unidmrn  4793  cnvexg  4798  cnviinm  4802  funi  4875  funcnvsn  4888  funcnv2  4902  funcnveq  4905  fcnvres  5016  f1cnvcnv  5043  f1ompt  5263  fliftcnv  5378  cnvf1o  5788  reldmtpos  5809  dmtpos  5812  rntpos  5813  dftpos3  5818  dftpos4  5819  tpostpos  5820  tposf12  5825  ercnv  6063
  Copyright terms: Public domain W3C validator