ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel Unicode version

Theorem ssrel 4428
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrel  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem ssrel
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 2939 . . 3  |-  ( A 
C_  B  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) )
21alrimivv 1755 . 2  |-  ( A 
C_  B  ->  A. x A. y ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  B ) )
3 eleq1 2100 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  A  <->  <. x ,  y
>.  e.  A ) )
4 eleq1 2100 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  B  <->  <. x ,  y
>.  e.  B ) )
53, 4imbi12d 223 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( ( z  e.  A  ->  z  e.  B )  <->  ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  B ) ) )
65biimprcd 149 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( z  =  <. x ,  y
>.  ->  ( z  e.  A  ->  z  e.  B ) ) )
762alimi 1345 . . . . . . . 8  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  A. x A. y ( z  = 
<. x ,  y >.  ->  ( z  e.  A  ->  z  e.  B ) ) )
8 19.23vv 1764 . . . . . . . 8  |-  ( A. x A. y ( z  =  <. x ,  y
>.  ->  ( z  e.  A  ->  z  e.  B ) )  <->  ( E. x E. y  z  = 
<. x ,  y >.  ->  ( z  e.  A  ->  z  e.  B ) ) )
97, 8sylib 127 . . . . . . 7  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( E. x E. y  z  = 
<. x ,  y >.  ->  ( z  e.  A  ->  z  e.  B ) ) )
109com23 72 . . . . . 6  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( z  e.  A  ->  ( E. x E. y  z  =  <. x ,  y
>.  ->  z  e.  B
) ) )
1110a2d 23 . . . . 5  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( (
z  e.  A  ->  E. x E. y  z  =  <. x ,  y
>. )  ->  ( z  e.  A  ->  z  e.  B ) ) )
1211alimdv 1759 . . . 4  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( A. z ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
)  ->  A. z
( z  e.  A  ->  z  e.  B ) ) )
13 df-rel 4352 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
14 dfss2 2934 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  <->  A. z ( z  e.  A  ->  z  e.  ( _V  X.  _V ) ) )
15 elvv 4402 . . . . . . 7  |-  ( z  e.  ( _V  X.  _V )  <->  E. x E. y 
z  =  <. x ,  y >. )
1615imbi2i 215 . . . . . 6  |-  ( ( z  e.  A  -> 
z  e.  ( _V 
X.  _V ) )  <->  ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
) )
1716albii 1359 . . . . 5  |-  ( A. z ( z  e.  A  ->  z  e.  ( _V  X.  _V )
)  <->  A. z ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
) )
1813, 14, 173bitri 195 . . . 4  |-  ( Rel 
A  <->  A. z ( z  e.  A  ->  E. x E. y  z  =  <. x ,  y >.
) )
19 dfss2 2934 . . . 4  |-  ( A 
C_  B  <->  A. z
( z  e.  A  ->  z  e.  B ) )
2012, 18, 193imtr4g 194 . . 3  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  ( Rel  A  ->  A  C_  B
) )
2120com12 27 . 2  |-  ( Rel 
A  ->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  ->  A  C_  B
) )
222, 21impbid2 131 1  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557    C_ wss 2917   <.cop 3378    X. cxp 4343   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  eqrel  4429  relssi  4431  relssdv  4432  cotr  4706  cnvsym  4708  intasym  4709  intirr  4711  codir  4713  qfto  4714
  Copyright terms: Public domain W3C validator