ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos2 Unicode version

Theorem brtpos2 5866
Description: Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )

Proof of Theorem brtpos2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 5865 . . . 4  |-  Rel tpos  F
21brrelexi 4384 . . 3  |-  ( Atpos 
F B  ->  A  e.  _V )
32a1i 9 . 2  |-  ( B  e.  V  ->  ( Atpos  F B  ->  A  e.  _V ) )
4 elex 2566 . . . 4  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  A  e.  _V )
54adantr 261 . . 3  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V )
65a1i 9 . 2  |-  ( B  e.  V  ->  (
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V ) )
7 df-tpos 5860 . . . . . 6  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
87breqi 3770 . . . . 5  |-  ( Atpos 
F B  <->  A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B )
9 brcog 4502 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B  <->  E. y
( A ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) y  /\  y F B ) ) )
108, 9syl5bb 181 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <->  E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B ) ) )
11 funmpt 4938 . . . . . . . . . . 11  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
12 funbrfv2b 5218 . . . . . . . . . . 11  |-  ( Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  ->  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) ) )
1311, 12ax-mp 7 . . . . . . . . . 10  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) )
14 vex 2560 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
15 snexg 3936 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  { x }  e.  _V )
1614, 15ax-mp 7 . . . . . . . . . . . . . . . 16  |-  { x }  e.  _V
1716cnvex 4856 . . . . . . . . . . . . . . 15  |-  `' {
x }  e.  _V
1817uniex 4174 . . . . . . . . . . . . . 14  |-  U. `' { x }  e.  _V
19 eqid 2040 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2018, 19dmmpti 5028 . . . . . . . . . . . . 13  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  =  ( `' dom  F  u.  { (/) } )
2120eleq2i 2104 . . . . . . . . . . . 12  |-  ( A  e.  dom  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
22 eqcom 2042 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  =  y  <->  y  =  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A ) )
2321, 22anbi12i 433 . . . . . . . . . . 11  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) ) )
24 snexg 3936 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  { A }  e.  _V )
25 cnvexg 4855 . . . . . . . . . . . . . . . 16  |-  ( { A }  e.  _V  ->  `' { A }  e.  _V )
2624, 25syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  `' { A }  e.  _V )
27 uniexg 4175 . . . . . . . . . . . . . . 15  |-  ( `' { A }  e.  _V  ->  U. `' { A }  e.  _V )
2826, 27syl 14 . . . . . . . . . . . . . 14  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  U. `' { A }  e.  _V )
29 sneq 3386 . . . . . . . . . . . . . . . . 17  |-  ( x  =  A  ->  { x }  =  { A } )
3029cnveqd 4511 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  `' { x }  =  `' { A } )
3130unieqd 3591 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  U. `' { x }  =  U. `' { A } )
3231, 19fvmptg 5248 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A }  e.  _V )  ->  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  = 
U. `' { A } )
3328, 32mpdan 398 . . . . . . . . . . . . 13  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  U. `' { A } )
3433eqeq2d 2051 . . . . . . . . . . . 12  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) `
 A )  <->  y  =  U. `' { A } ) )
3534pm5.32i 427 . . . . . . . . . . 11  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
3623, 35bitri 173 . . . . . . . . . 10  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } ) )
3713, 36bitri 173 . . . . . . . . 9  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
38 ancom 253 . . . . . . . . 9  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } )  <->  ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3937, 38bitri 173 . . . . . . . 8  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( y  = 
U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
4039anbi1i 431 . . . . . . 7  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( (
y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B ) )
41 anass 381 . . . . . . 7  |-  ( ( ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
4240, 41bitri 173 . . . . . 6  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
4342exbii 1496 . . . . 5  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) ) )
44 exsimpr 1509 . . . . . . 7  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  ->  E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )
45 exsimpl 1508 . . . . . . . 8  |-  ( E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B )  ->  E. y  A  e.  ( `' dom  F  u.  { (/)
} ) )
46 19.9v 1751 . . . . . . . 8  |-  ( E. y  A  e.  ( `' dom  F  u.  { (/)
} )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
4745, 46sylib 127 . . . . . . 7  |-  ( E. y ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B )  ->  A  e.  ( `' dom  F  u.  { (/) } ) )
4844, 47syl 14 . . . . . 6  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  ->  A  e.  ( `' dom  F  u.  { (/)
} ) )
49 simpl 102 . . . . . 6  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  ( `' dom  F  u.  { (/) } ) )
50 breq1 3767 . . . . . . . . 9  |-  ( y  =  U. `' { A }  ->  ( y F B  <->  U. `' { A } F B ) )
5150anbi2d 437 . . . . . . . 8  |-  ( y  =  U. `' { A }  ->  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5251ceqsexgv 2673 . . . . . . 7  |-  ( U. `' { A }  e.  _V  ->  ( E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5328, 52syl 14 . . . . . 6  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
5448, 49, 53pm5.21nii 620 . . . . 5  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) )
5543, 54bitri 173 . . . 4  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) )
5610, 55syl6bb 185 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) ) )
5756expcom 109 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) ) )
583, 6, 57pm5.21ndd 621 1  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557    u. cun 2915   (/)c0 3224   {csn 3375   U.cuni 3580   class class class wbr 3764    |-> cmpt 3818   `'ccnv 4344   dom cdm 4345    o. ccom 4349   Fun wfun 4896   ` cfv 4902  tpos ctpos 5859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-tpos 5860
This theorem is referenced by:  brtpos0  5867  reldmtpos  5868  brtposg  5869  dftpos4  5878  tpostpos  5879
  Copyright terms: Public domain W3C validator