ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21nii Structured version   Unicode version

Theorem pm5.21nii 607
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ni.1
pm5.21ni.2
pm5.21nii.3
Assertion
Ref Expression
pm5.21nii

Proof of Theorem pm5.21nii
StepHypRef Expression
1 pm5.21ni.1 . . . 4
2 pm5.21nii.3 . . . 4
31, 2syl 14 . . 3
43ibi 165 . 2
5 pm5.21ni.2 . . . 4
65, 2syl 14 . . 3
76ibir 166 . 2
84, 7impbii 117 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  anxordi  1274  elrabf  2673  sbcco  2762  sbc5  2764  sbcan  2782  sbcor  2784  sbcal  2787  sbcex2  2789  eldif  2904  elun  3061  elin  3103  eluni  3557  eliun  3635  elopab  3969  opelopabsb  3971  opeliunxp  4322  opeliunxp2  4403  elxp4  4735  elxp5  4736  fsn2  5262  isocnv2  5377  elxp6  5719  elxp7  5720  brtpos2  5788  tpostpos  5801  ecdmn0m  6059  elinp  6328  recexprlemell  6456  recexprlemelu  6457  gt0srpr  6495  ltresr  6550
  Copyright terms: Public domain W3C validator