ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinp Unicode version

Theorem elinp 6572
Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
elinp  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
Distinct variable groups:    r, q, L    U, q, r

Proof of Theorem elinp
Dummy variables  u  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npsspw 6569 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 2941 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  <. L ,  U >.  e.  ( ~P Q.  X.  ~P Q. ) )
3 opelxp 4374 . . . 4  |-  ( <. L ,  U >.  e.  ( ~P Q.  X.  ~P Q. )  <->  ( L  e.  ~P Q.  /\  U  e.  ~P Q. ) )
42, 3sylib 127 . . 3  |-  ( <. L ,  U >.  e. 
P.  ->  ( L  e. 
~P Q.  /\  U  e. 
~P Q. ) )
5 elex 2566 . . . 4  |-  ( L  e.  ~P Q.  ->  L  e.  _V )
6 elex 2566 . . . 4  |-  ( U  e.  ~P Q.  ->  U  e.  _V )
75, 6anim12i 321 . . 3  |-  ( ( L  e.  ~P Q.  /\  U  e.  ~P Q. )  ->  ( L  e. 
_V  /\  U  e.  _V ) )
84, 7syl 14 . 2  |-  ( <. L ,  U >.  e. 
P.  ->  ( L  e. 
_V  /\  U  e.  _V ) )
9 nqex 6461 . . . . 5  |-  Q.  e.  _V
109ssex 3894 . . . 4  |-  ( L 
C_  Q.  ->  L  e. 
_V )
119ssex 3894 . . . 4  |-  ( U 
C_  Q.  ->  U  e. 
_V )
1210, 11anim12i 321 . . 3  |-  ( ( L  C_  Q.  /\  U  C_ 
Q. )  ->  ( L  e.  _V  /\  U  e.  _V ) )
1312ad2antrr 457 . 2  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  ( L  e.  _V  /\  U  e. 
_V ) )
14 df-inp 6564 . . . 4  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
1514eleq2i 2104 . . 3  |-  ( <. L ,  U >.  e. 
P. 
<-> 
<. L ,  U >.  e. 
{ <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) } )
16 sseq1 2966 . . . . . . 7  |-  ( l  =  L  ->  (
l  C_  Q.  <->  L  C_  Q. ) )
1716anbi1d 438 . . . . . 6  |-  ( l  =  L  ->  (
( l  C_  Q.  /\  u  C_  Q. )  <->  ( L  C_  Q.  /\  u  C_ 
Q. ) ) )
18 eleq2 2101 . . . . . . . 8  |-  ( l  =  L  ->  (
q  e.  l  <->  q  e.  L ) )
1918rexbidv 2327 . . . . . . 7  |-  ( l  =  L  ->  ( E. q  e.  Q.  q  e.  l  <->  E. q  e.  Q.  q  e.  L
) )
2019anbi1d 438 . . . . . 6  |-  ( l  =  L  ->  (
( E. q  e. 
Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
)  <->  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )
) )
2117, 20anbi12d 442 . . . . 5  |-  ( l  =  L  ->  (
( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  <->  ( ( L  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) ) ) )
22 eleq2 2101 . . . . . . . . . . 11  |-  ( l  =  L  ->  (
r  e.  l  <->  r  e.  L ) )
2322anbi2d 437 . . . . . . . . . 10  |-  ( l  =  L  ->  (
( q  <Q  r  /\  r  e.  l
)  <->  ( q  <Q 
r  /\  r  e.  L ) ) )
2423rexbidv 2327 . . . . . . . . 9  |-  ( l  =  L  ->  ( E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) )
2518, 24bibi12d 224 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  <->  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) ) )
2625ralbidv 2326 . . . . . . 7  |-  ( l  =  L  ->  ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  <->  A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) ) )
2726anbi1d 438 . . . . . 6  |-  ( l  =  L  ->  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  <-> 
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) ) ) )
2818anbi1d 438 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  /\  q  e.  u
)  <->  ( q  e.  L  /\  q  e.  u ) ) )
2928notbid 592 . . . . . . 7  |-  ( l  =  L  ->  ( -.  ( q  e.  l  /\  q  e.  u
)  <->  -.  ( q  e.  L  /\  q  e.  u ) ) )
3029ralbidv 2326 . . . . . 6  |-  ( l  =  L  ->  ( A. q  e.  Q.  -.  ( q  e.  l  /\  q  e.  u
)  <->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  u
) ) )
3118orbi1d 705 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  \/  r  e.  u
)  <->  ( q  e.  L  \/  r  e.  u ) ) )
3231imbi2d 219 . . . . . . 7  |-  ( l  =  L  ->  (
( q  <Q  r  ->  ( q  e.  l  \/  r  e.  u
) )  <->  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  u ) ) ) )
33322ralbidv 2348 . . . . . 6  |-  ( l  =  L  ->  ( A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  l  \/  r  e.  u ) )  <->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  u )
) ) )
3427, 30, 333anbi123d 1207 . . . . 5  |-  ( l  =  L  ->  (
( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) )  <-> 
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) ) )
3521, 34anbi12d 442 . . . 4  |-  ( l  =  L  ->  (
( ( ( l 
C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  <->  ( ( ( L  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) ) ) )
36 sseq1 2966 . . . . . . 7  |-  ( u  =  U  ->  (
u  C_  Q.  <->  U  C_  Q. ) )
3736anbi2d 437 . . . . . 6  |-  ( u  =  U  ->  (
( L  C_  Q.  /\  u  C_  Q. )  <->  ( L  C_  Q.  /\  U  C_ 
Q. ) ) )
38 eleq2 2101 . . . . . . . 8  |-  ( u  =  U  ->  (
r  e.  u  <->  r  e.  U ) )
3938rexbidv 2327 . . . . . . 7  |-  ( u  =  U  ->  ( E. r  e.  Q.  r  e.  u  <->  E. r  e.  Q.  r  e.  U
) )
4039anbi2d 437 . . . . . 6  |-  ( u  =  U  ->  (
( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )  <->  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) ) )
4137, 40anbi12d 442 . . . . 5  |-  ( u  =  U  ->  (
( ( L  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )
)  <->  ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) ) ) )
42 eleq2 2101 . . . . . . . . . . 11  |-  ( u  =  U  ->  (
q  e.  u  <->  q  e.  U ) )
4342anbi2d 437 . . . . . . . . . 10  |-  ( u  =  U  ->  (
( q  <Q  r  /\  q  e.  u
)  <->  ( q  <Q 
r  /\  q  e.  U ) ) )
4443rexbidv 2327 . . . . . . . . 9  |-  ( u  =  U  ->  ( E. q  e.  Q.  ( q  <Q  r  /\  q  e.  u
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) )
4538, 44bibi12d 224 . . . . . . . 8  |-  ( u  =  U  ->  (
( r  e.  u  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  u ) )  <->  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) ) )
4645ralbidv 2326 . . . . . . 7  |-  ( u  =  U  ->  ( A. r  e.  Q.  ( r  e.  u  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  u ) )  <->  A. r  e.  Q.  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) ) )
4746anbi2d 437 . . . . . 6  |-  ( u  =  U  ->  (
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  <-> 
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) ) ) )
4842anbi2d 437 . . . . . . . 8  |-  ( u  =  U  ->  (
( q  e.  L  /\  q  e.  u
)  <->  ( q  e.  L  /\  q  e.  U ) ) )
4948notbid 592 . . . . . . 7  |-  ( u  =  U  ->  ( -.  ( q  e.  L  /\  q  e.  u
)  <->  -.  ( q  e.  L  /\  q  e.  U ) ) )
5049ralbidv 2326 . . . . . 6  |-  ( u  =  U  ->  ( A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  u
)  <->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) ) )
5138orbi2d 704 . . . . . . . 8  |-  ( u  =  U  ->  (
( q  e.  L  \/  r  e.  u
)  <->  ( q  e.  L  \/  r  e.  U ) ) )
5251imbi2d 219 . . . . . . 7  |-  ( u  =  U  ->  (
( q  <Q  r  ->  ( q  e.  L  \/  r  e.  u
) )  <->  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )
53522ralbidv 2348 . . . . . 6  |-  ( u  =  U  ->  ( A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  u )
)  <->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  U )
) ) )
5447, 50, 533anbi123d 1207 . . . . 5  |-  ( u  =  U  ->  (
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) )  <-> 
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
5541, 54anbi12d 442 . . . 4  |-  ( u  =  U  ->  (
( ( ( L 
C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) )  <->  ( ( ( L  C_  Q.  /\  U  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
5635, 55opelopabg 4005 . . 3  |-  ( ( L  e.  _V  /\  U  e.  _V )  ->  ( <. L ,  U >.  e.  { <. l ,  u >.  |  (
( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }  <->  ( (
( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
5715, 56syl5bb 181 . 2  |-  ( ( L  e.  _V  /\  U  e.  _V )  ->  ( <. L ,  U >.  e.  P.  <->  ( (
( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
588, 13, 57pm5.21nii 620 1  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   _Vcvv 2557    C_ wss 2917   ~Pcpw 3359   <.cop 3378   class class class wbr 3764   {copab 3817    X. cxp 4343   Q.cnq 6378    <Q cltq 6383   P.cnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-qs 6112  df-ni 6402  df-nqqs 6446  df-inp 6564
This theorem is referenced by:  elnp1st2nd  6574  prml  6575  prmu  6576  prssnql  6577  prssnqu  6578  prcdnql  6582  prcunqu  6583  prltlu  6585  prnmaxl  6586  prnminu  6587  prloc  6589  prdisj  6590  nqprxx  6644
  Copyright terms: Public domain W3C validator