ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcunqu Unicode version

Theorem prcunqu 6583
Description: An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prcunqu  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) )

Proof of Theorem prcunqu
Dummy variables  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6463 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4392 . . . . 5  |-  ( C 
<Q  B  ->  ( C  e.  Q.  /\  B  e.  Q. ) )
32simprd 107 . . . 4  |-  ( C 
<Q  B  ->  B  e. 
Q. )
43adantl 262 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  Q. )
5 breq2 3768 . . . . . . 7  |-  ( b  =  B  ->  ( C  <Q  b  <->  C  <Q  B ) )
6 eleq1 2100 . . . . . . 7  |-  ( b  =  B  ->  (
b  e.  U  <->  B  e.  U ) )
75, 6imbi12d 223 . . . . . 6  |-  ( b  =  B  ->  (
( C  <Q  b  ->  b  e.  U )  <-> 
( C  <Q  B  ->  B  e.  U )
) )
87imbi2d 219 . . . . 5  |-  ( b  =  B  ->  (
( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  ->  ( C  <Q  b  ->  b  e.  U ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) ) ) )
91brel 4392 . . . . . . . 8  |-  ( C 
<Q  b  ->  ( C  e.  Q.  /\  b  e.  Q. ) )
10 an42 521 . . . . . . . . 9  |-  ( ( ( C  e.  Q.  /\  b  e.  Q. )  /\  ( C  e.  U  /\  <. L ,  U >.  e.  P. ) )  <-> 
( ( C  e. 
Q.  /\  C  e.  U )  /\  ( <. L ,  U >.  e. 
P.  /\  b  e.  Q. ) ) )
11 breq1 3767 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
c  <Q  b  <->  C  <Q  b ) )
12 eleq1 2100 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
c  e.  U  <->  C  e.  U ) )
1311, 12anbi12d 442 . . . . . . . . . . . . . . 15  |-  ( c  =  C  ->  (
( c  <Q  b  /\  c  e.  U
)  <->  ( C  <Q  b  /\  C  e.  U
) ) )
1413rspcev 2656 . . . . . . . . . . . . . 14  |-  ( ( C  e.  Q.  /\  ( C  <Q  b  /\  C  e.  U )
)  ->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) )
15 elinp 6572 . . . . . . . . . . . . . . . 16  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U ) )  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  ( c  <Q  b  /\  b  e.  L
) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) ) )
16 simpr1r 962 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. c  e.  Q.  c  e.  L  /\  E. b  e.  Q.  b  e.  U )
)  /\  ( ( A. c  e.  Q.  ( c  e.  L  <->  E. b  e.  Q.  (
c  <Q  b  /\  b  e.  L ) )  /\  A. b  e.  Q.  (
b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )  /\  A. c  e. 
Q.  -.  ( c  e.  L  /\  c  e.  U )  /\  A. c  e.  Q.  A. b  e.  Q.  ( c  <Q 
b  ->  ( c  e.  L  \/  b  e.  U ) ) ) )  ->  A. b  e.  Q.  ( b  e.  U  <->  E. c  e.  Q.  ( c  <Q  b  /\  c  e.  U
) ) )
1715, 16sylbi 114 . . . . . . . . . . . . . . 15  |-  ( <. L ,  U >.  e. 
P.  ->  A. b  e.  Q.  ( b  e.  U  <->  E. c  e.  Q.  (
c  <Q  b  /\  c  e.  U ) ) )
1817r19.21bi 2407 . . . . . . . . . . . . . 14  |-  ( (
<. L ,  U >.  e. 
P.  /\  b  e.  Q. )  ->  ( b  e.  U  <->  E. c  e.  Q.  ( c  <Q 
b  /\  c  e.  U ) ) )
1914, 18syl5ibrcom 146 . . . . . . . . . . . . 13  |-  ( ( C  e.  Q.  /\  ( C  <Q  b  /\  C  e.  U )
)  ->  ( ( <. L ,  U >.  e. 
P.  /\  b  e.  Q. )  ->  b  e.  U ) )
20193impb 1100 . . . . . . . . . . . 12  |-  ( ( C  e.  Q.  /\  C  <Q  b  /\  C  e.  U )  ->  (
( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) )
21203com12 1108 . . . . . . . . . . 11  |-  ( ( C  <Q  b  /\  C  e.  Q.  /\  C  e.  U )  ->  (
( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) )
22213expib 1107 . . . . . . . . . 10  |-  ( C 
<Q  b  ->  ( ( C  e.  Q.  /\  C  e.  U )  ->  ( ( <. L ,  U >.  e.  P.  /\  b  e.  Q. )  ->  b  e.  U ) ) )
2322impd 242 . . . . . . . . 9  |-  ( C 
<Q  b  ->  ( ( ( C  e.  Q.  /\  C  e.  U )  /\  ( <. L ,  U >.  e.  P.  /\  b  e.  Q. )
)  ->  b  e.  U ) )
2410, 23syl5bi 141 . . . . . . . 8  |-  ( C 
<Q  b  ->  ( ( ( C  e.  Q.  /\  b  e.  Q. )  /\  ( C  e.  U  /\  <. L ,  U >.  e.  P. ) )  ->  b  e.  U
) )
259, 24mpand 405 . . . . . . 7  |-  ( C 
<Q  b  ->  ( ( C  e.  U  /\  <. L ,  U >.  e. 
P. )  ->  b  e.  U ) )
2625com12 27 . . . . . 6  |-  ( ( C  e.  U  /\  <. L ,  U >.  e. 
P. )  ->  ( C  <Q  b  ->  b  e.  U ) )
2726ancoms 255 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  b  ->  b  e.  U ) )
288, 27vtoclg 2613 . . . 4  |-  ( B  e.  Q.  ->  (
( <. L ,  U >.  e.  P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) ) )
2928impd 242 . . 3  |-  ( B  e.  Q.  ->  (
( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  U
) )
304, 29mpcom 32 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  C  e.  U )  /\  C  <Q  B )  ->  B  e.  U )
3130ex 108 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  C  e.  U )  ->  ( C  <Q  B  ->  B  e.  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307    C_ wss 2917   <.cop 3378   class class class wbr 3764   Q.cnq 6378    <Q cltq 6383   P.cnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-qs 6112  df-ni 6402  df-nqqs 6446  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  prarloc  6601  prarloc2  6602  addnqprulem  6626  nqpru  6650  prmuloc2  6665  mulnqpru  6667  distrlem4pru  6683  1idpru  6689  ltexprlemm  6698  ltexprlemupu  6702  ltexprlemrl  6708  ltexprlemfu  6709  ltexprlemru  6710  aptiprlemu  6738
  Copyright terms: Public domain W3C validator