ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 Unicode version

Theorem prmuloc2 6665
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 6664 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prmuloc2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prmuloc 6664 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  Q.  E. y  e. 
Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) ) )
2 nfv 1421 . . 3  |-  F/ x
( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )
3 nfre1 2365 . . 3  |-  F/ x E. x  e.  L  ( x  .Q  B
)  e.  U
4 simpr1 910 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  x  e.  L )
5 simpr3 912 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  .Q  1Q )  <Q  ( x  .Q  B ) )
6 simplrr 488 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  Q. )
7 mulidnq 6487 . . . . . . . . . . 11  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
8 breq1 3767 . . . . . . . . . . 11  |-  ( ( y  .Q  1Q )  =  y  ->  (
( y  .Q  1Q )  <Q  ( x  .Q  B )  <->  y  <Q  ( x  .Q  B ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( ( y  .Q  1Q )  <Q  (
x  .Q  B )  <-> 
y  <Q  ( x  .Q  B ) ) )
105, 9mpbid 135 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  <Q  ( x  .Q  B ) )
11 simplll 485 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  <. L ,  U >.  e. 
P. )
12 simpr2 911 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  U )
13 prcunqu 6583 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  .Q  B )  ->  (
x  .Q  B )  e.  U ) )
1411, 12, 13syl2anc 391 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  <Q  (
x  .Q  B )  ->  ( x  .Q  B )  e.  U
) )
1510, 14mpd 13 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( x  .Q  B
)  e.  U )
16 rspe 2370 . . . . . . . 8  |-  ( ( x  e.  L  /\  ( x  .Q  B
)  e.  U )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
174, 15, 16syl2anc 391 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
1817ex 108 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
1918anassrs 380 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  /\  y  e.  Q. )  ->  ( ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
2019rexlimdva 2433 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  ->  ( E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
2120ex 108 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( x  e.  Q.  ->  ( E. y  e.  Q.  (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) ) )
222, 3, 21rexlimd 2430 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( E. x  e.  Q.  E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
231, 22mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307   <.cop 3378   class class class wbr 3764  (class class class)co 5512   Q.cnq 6378   1Qc1q 6379    .Q cmq 6381    <Q cltq 6383   P.cnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564
This theorem is referenced by:  recexprlem1ssl  6731  recexprlem1ssu  6732
  Copyright terms: Public domain W3C validator