HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremprarloc 6601* A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance  P, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 6602 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

 |-  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
 
Theoremprarloc2 6602* A Dedekind cut is arithmetically located. This is a variation of prarloc 6601 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance  P, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  ->  E. a  e.  L  ( a  +Q  P )  e.  U )
 
Theoremltrelpr 6603 Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
 |- 
 <P  C_  ( P.  X.  P. )
 
Theoremltdfpr 6604* More convenient form of df-iltp 6568. (Contributed by Jim Kingdon, 15-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  <P  B  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )
 
Theoremgenpdflem 6605* Simplification of upper or lower cut expression. Lemma for genpdf 6606. (Contributed by Jim Kingdon, 30-Sep-2019.)
 |-  ( ( ph  /\  r  e.  A )  ->  r  e.  Q. )   &    |-  ( ( ph  /\  s  e.  B ) 
 ->  s  e.  Q. )   =>    |-  ( ph  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  A  /\  s  e.  B  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  A  E. s  e.  B  q  =  ( r G s ) }
 )
 
Theoremgenpdf 6606* Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e. 
 Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v )  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e. 
 Q.  ( r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v )  /\  q  =  ( r G s ) ) } >. )   =>    |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e. 
 Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v ) q  =  ( r G s ) } >. )
 
Theoremgenipv 6607* Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  = 
 <. { q  e.  Q.  |  E. r  e.  ( 1st `  A ) E. s  e.  ( 1st `  B ) q  =  ( r G s ) } ,  {
 q  e.  Q.  |  E. r  e.  ( 2nd `  A ) E. s  e.  ( 2nd `  B ) q  =  ( r G s ) } >. )
 
Theoremgenplt2i 6608* Operating on both sides of two inequalities, when the operation is consistent with  <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
 |-  ( ( x  e. 
 Q.  /\  y  e.  Q. 
 /\  z  e.  Q. )  ->  ( x  <Q  y  <-> 
 ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   =>    |-  ( ( A  <Q  B 
 /\  C  <Q  D ) 
 ->  ( A G C )  <Q  ( B G D ) )
 
Theoremgenpelxp 6609* Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A F B )  e.  ( ~P Q.  X.  ~P Q. ) )
 
Theoremgenpelvl 6610* Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
 
Theoremgenpelvu 6611* Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
 
Theoremgenpprecll 6612* Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  (
 ( C  e.  ( 1st `  A )  /\  D  e.  ( 1st `  B ) )  ->  ( C G D )  e.  ( 1st `  ( A F B ) ) ) )
 
Theoremgenppreclu 6613* Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  (
 ( C  e.  ( 2nd `  A )  /\  D  e.  ( 2nd `  B ) )  ->  ( C G D )  e.  ( 2nd `  ( A F B ) ) ) )
 
Theoremgenipdm 6614* Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  dom  F  =  ( P.  X.  P. )
 
Theoremgenpml 6615* The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 1st `  ( A F B ) ) )
 
Theoremgenpmu 6616* The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   =>    |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. q  e.  Q.  q  e.  ( 2nd `  ( A F B ) ) )
 
Theoremgenpcdl 6617* Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) )  /\  x  e.  Q. )  ->  ( x  <Q  ( g G h )  ->  x  e.  ( 1st `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( f  e.  ( 1st `  ( A F B ) ) 
 ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
 
Theoremgenpcuu 6618* Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) ) 
 ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
 
Theoremgenprndl 6619* The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  y  <->  ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) ) 
 /\  x  e.  Q. )  ->  ( x  <Q  ( g G h ) 
 ->  x  e.  ( 1st `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  ( q  e.  ( 1st `  ( A F B ) )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  ( A F B ) ) ) ) )
 
Theoremgenprndu 6620* The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  y  <->  ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) ) 
 /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x 
 ->  x  e.  ( 2nd `  ( A F B ) ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  ( A F B ) )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  ( A F B ) ) ) ) )
 
Theoremgenpdisj 6621* The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  (
 ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  y  <->  ( z G x )  <Q  ( z G y ) ) )   &    |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
 
Theoremgenpassl 6622* Associativity of lower cuts. Lemma for genpassg 6624. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  dom  F  =  ( P.  X.  P. )   &    |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  (
 f F g )  e.  P. )   &    |-  (
 ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  ( ( f G g ) G h )  =  ( f G ( g G h ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  (
 ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) ) )
 
Theoremgenpassu 6623* Associativity of upper cuts. Lemma for genpassg 6624. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  dom  F  =  ( P.  X.  P. )   &    |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  (
 f F g )  e.  P. )   &    |-  (
 ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  ( ( f G g ) G h )  =  ( f G ( g G h ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  (
 ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) )
 
Theoremgenpassg 6624* Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e. 
 Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v )  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e. 
 Q.  ( y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v )  /\  x  =  ( y G z ) ) } >. )   &    |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  (
 y G z )  e.  Q. )   &    |-  dom  F  =  ( P.  X.  P. )   &    |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  (
 f F g )  e.  P. )   &    |-  (
 ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  ( ( f G g ) G h )  =  ( f G ( g G h ) ) )   =>    |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
 
Theoremaddnqprllem 6625 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  L ) 
 /\  X  e.  Q. )  ->  ( X  <Q  S 
 ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  L ) )
 
Theoremaddnqprulem 6626 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U ) 
 /\  X  e.  Q. )  ->  ( S  <Q  X 
 ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
 
Theoremaddnqprl 6627 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H ) 
 ->  X  e.  ( 1st `  ( A  +P.  B ) ) ) )
 
Theoremaddnqpru 6628 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X 
 ->  X  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlemlt 6629 Lemma for addlocpr 6634. The  Q  <Q  ( D  +Q  E ) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  ->  Q  e.  ( 1st `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlemeqgt 6630 Lemma for addlocpr 6634. This is a step used in both the  Q  =  ( D  +Q  E ) and  ( D  +Q  E
)  <Q  Q cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( U  +Q  T )  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P ) ) )
 
Theoremaddlocprlemeq 6631 Lemma for addlocpr 6634. The  Q  =  ( D  +Q  E ) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlemgt 6632 Lemma for addlocpr 6634. The  ( D  +Q  E
)  <Q  Q case. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  (
 ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocprlem 6633 Lemma for addlocpr 6634. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  Q  <Q  R )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )   &    |-  ( ph  ->  D  e.  ( 1st `  A ) )   &    |-  ( ph  ->  U  e.  ( 2nd `  A )
 )   &    |-  ( ph  ->  U  <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  E  e.  ( 1st `  B ) )   &    |-  ( ph  ->  T  e.  ( 2nd `  B ) )   &    |-  ( ph  ->  T 
 <Q  ( E  +Q  P ) )   =>    |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
 
Theoremaddlocpr 6634* Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 6601 to both  A and  B, and uses nqtri3or 6494 rather than prloc 6589 to decide whether  q is too big to be in the lower cut of  A  +P.  B (and deduce that if it is, then  r must be in the upper cut). What the two proofs have in common is that they take the difference between  q and  r to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  ( A  +P.  B ) )  \/  r  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
 
Theoremaddclpr 6635 Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  e.  P. )
 
Theoremplpvlu 6636* Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  +Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  +Q  z
 ) } >. )
 
Theoremmpvlu 6637* Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
 ) } >. )
 
Theoremdmplp 6638 Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.)
 |- 
 dom  +P.  =  ( P. 
 X.  P. )
 
Theoremdmmp 6639 Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
 |- 
 dom  .P.  =  ( P. 
 X.  P. )
 
Theoremnqprm 6640* A cut produced from a rational is inhabited. Lemma for nqprlu 6645. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  ( E. q  e. 
 Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x } ) )
 
Theoremnqprrnd 6641* A cut produced from a rational is rounded. Lemma for nqprlu 6645. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  ( A. q  e. 
 Q.  ( q  e. 
 { x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
 ) )  /\  A. r  e.  Q.  (
 r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
 q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
 
Theoremnqprdisj 6642* A cut produced from a rational is disjoint. Lemma for nqprlu 6645. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e. 
 { x  |  A  <Q  x } ) )
 
Theoremnqprloc 6643* A cut produced from a rational is located. Lemma for nqprlu 6645. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
 ) ) )
 
Theoremnqprxx 6644* The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( A  e.  Q.  -> 
 <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
 
Theoremnqprlu 6645* The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
 |-  ( A  e.  Q.  -> 
 <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
 
Theoremrecnnpr 6646* The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
 |-  ( A  e.  N.  -> 
 <. { l  |  l 
 <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  u } >.  e. 
 P. )
 
Theoremltnqex 6647 The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |- 
 { x  |  x  <Q  A }  e.  _V
 
Theoremgtnqex 6648 The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |- 
 { x  |  A  <Q  x }  e.  _V
 
Theoremnqprl 6649* Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by 
<P. (Contributed by Jim Kingdon, 8-Jul-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
 
Theoremnqpru 6650* Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by 
<P. (Contributed by Jim Kingdon, 29-Nov-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <->  B 
 <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
 
Theoremnnprlu 6651* The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  N.  -> 
 <. { l  |  l 
 <Q  [ <. A ,  1o >. ]  ~Q  } ,  { u  |  [ <. A ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
 
Theorem1pr 6652 The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |- 
 1P  e.  P.
 
Theorem1prl 6653 The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( 1st `  1P )  =  { x  |  x  <Q  1Q }
 
Theorem1pru 6654 The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( 2nd `  1P )  =  { x  |  1Q  <Q  x }
 
Theoremaddnqprlemrl 6655* Lemma for addnqpr 6659. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. ) )
 
Theoremaddnqprlemru 6656* Lemma for addnqpr 6659. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. ) )
 
Theoremaddnqprlemfl 6657* Lemma for addnqpr 6659. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremaddnqprlemfu 6658* Lemma for addnqpr 6659. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremaddnqpr 6659* Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddnqpr1 6660* Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 6659. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  Q.  -> 
 <. { l  |  l 
 <Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  1P ) )
 
Theoremappdivnq 6661* Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where  A and  B are positive, as well as  C). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  <Q  B 
 /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C ) 
 <Q  B ) )
 
Theoremappdiv0nq 6662* Approximate division for positive rationals. This can be thought of as a variation of appdivnq 6661 in which  A is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ( B  e.  Q. 
 /\  C  e.  Q. )  ->  E. m  e.  Q.  ( m  .Q  C ) 
 <Q  B )
 
Theoremprmuloclemcalc 6663 Calculations for prmuloc 6664. (Contributed by Jim Kingdon, 9-Dec-2019.)
 |-  ( ph  ->  R  <Q  U )   &    |-  ( ph  ->  U 
 <Q  ( D  +Q  P ) )   &    |-  ( ph  ->  ( A  +Q  X )  =  B )   &    |-  ( ph  ->  ( P  .Q  B )  <Q  ( R  .Q  X ) )   &    |-  ( ph  ->  A  e.  Q. )   &    |-  ( ph  ->  B  e.  Q. )   &    |-  ( ph  ->  D  e.  Q. )   &    |-  ( ph  ->  P  e.  Q. )   &    |-  ( ph  ->  X  e.  Q. )   =>    |-  ( ph  ->  ( U  .Q  A ) 
 <Q  ( D  .Q  B ) )
 
Theoremprmuloc 6664* Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  ->  E. d  e.  Q.  E. u  e.  Q.  (
 d  e.  L  /\  u  e.  U  /\  ( u  .Q  A ) 
 <Q  ( d  .Q  B ) ) )
 
Theoremprmuloc2 6665* Positive reals are multiplicatively located. This is a variation of prmuloc 6664 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U )
 
Theoremmulnqprl 6666 Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H ) 
 ->  X  e.  ( 1st `  ( A  .P.  B ) ) ) )
 
Theoremmulnqpru 6667 Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X 
 ->  X  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocprlem 6668 Calculations for mullocpr 6669. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. ) )   &    |-  ( ph  ->  ( U  .Q  Q )  <Q  ( E  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) )  <Q  ( T  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) )  <Q  ( D  .Q  R ) )   &    |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )   &    |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
 )   &    |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )   &    |-  ( ph  ->  ( E  e.  Q. 
 /\  T  e.  Q. ) )   =>    |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocpr 6669* Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
 
Theoremmulclpr 6670 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  e.  P. )
 
Theoremmulnqprlemrl 6671* Lemma for mulnqpr 6675. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemru 6672* Lemma for mulnqpr 6675. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemfl 6673* Lemma for mulnqpr 6675. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqprlemfu 6674* Lemma for mulnqpr 6675. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqpr 6675* Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddcomprg 6676 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  =  ( B 
 +P.  A ) )
 
Theoremaddassprg 6677 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  +P.  C )  =  ( A  +P.  ( B  +P.  C ) ) )
 
Theoremmulcomprg 6678 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  ( B 
 .P.  A ) )
 
Theoremmulassprg 6679 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) ) )
 
Theoremdistrlem1prl 6680 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem1pru 6681 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem4prl 6682* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem4pru 6683* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5prl 6684 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5pru 6685 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrprg 6686 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A 
 .P.  B )  +P.  ( A  .P.  C ) ) )
 
Theoremltprordil 6687 If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
 |-  ( A  <P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
 
Theorem1idprl 6688 Lemma for 1idpr 6690. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
 
Theorem1idpru 6689 Lemma for 1idpr 6690. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )
 
Theorem1idpr 6690 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
 |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
 
Theoremltnqpr 6691* We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremltnqpri 6692* We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
 |-  ( A  <Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
 
Theoremltpopr 6693 Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 6694. (Contributed by Jim Kingdon, 15-Dec-2019.)
 |- 
 <P  Po  P.
 
Theoremltsopr 6694 Positive real 'less than' is a weak linear order (in the sense of df-iso 4034). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
 |- 
 <P  Or  P.
 
Theoremltaddpr 6695 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A  <P  ( A 
 +P.  B ) )
 
Theoremltexprlemell 6696* Element in lower cut of the constructed difference. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( q  e.  ( 1st `  C )  <->  ( q  e. 
 Q.  /\  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q
 )  e.  ( 1st `  B ) ) ) )
 
Theoremltexprlemelu 6697* Element in upper cut of the constructed difference. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( r  e.  ( 2nd `  C )  <->  ( r  e. 
 Q.  /\  E. y
 ( y  e.  ( 1st `  A )  /\  ( y  +Q  r
 )  e.  ( 2nd `  B ) ) ) )
 
Theoremltexprlemm 6698* Our constructed difference is inhabited. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C )  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemopl 6699* The lower cut of our constructed difference is open. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  q  e.  Q.  /\  q  e.  ( 1st `  C ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
 
Theoremltexprlemlol 6700* The lower cut of our constructed difference is lower. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  q  e.  Q. )  ->  ( E. r  e.  Q.  ( q  <Q  r 
 /\  r  e.  ( 1st `  C ) ) 
 ->  q  e.  ( 1st `  C ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >