ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprl Unicode version

Theorem mulnqprl 6666
Description: Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqprl  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  ->  X  e.  ( 1st `  ( A  .P.  B
) ) ) )

Proof of Theorem mulnqprl
Dummy variables  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6499 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
21adantl 262 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A
) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
3 simpr 103 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
4 prop 6573 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 6579 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
64, 5sylan 267 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
76ad2antrr 457 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
8 prop 6573 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 elprnql 6579 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
108, 9sylan 267 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
1110ad2antlr 458 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
12 mulclnq 6474 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  .Q  H
)  e.  Q. )
137, 11, 12syl2anc 391 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  H
)  e.  Q. )
14 recclnq 6490 . . . . . . 7  |-  ( H  e.  Q.  ->  ( *Q `  H )  e. 
Q. )
1511, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  H
)  e.  Q. )
16 mulcomnqg 6481 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
1716adantl 262 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A
) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
182, 3, 13, 15, 17caovord2d 5670 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  <->  ( X  .Q  ( *Q `  H
) )  <Q  (
( G  .Q  H
)  .Q  ( *Q
`  H ) ) ) )
19 mulassnqg 6482 . . . . . . . 8  |-  ( ( G  e.  Q.  /\  H  e.  Q.  /\  ( *Q `  H )  e. 
Q. )  ->  (
( G  .Q  H
)  .Q  ( *Q
`  H ) )  =  ( G  .Q  ( H  .Q  ( *Q `  H ) ) ) )
207, 11, 15, 19syl3anc 1135 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  .Q  ( *Q `  H ) )  =  ( G  .Q  ( H  .Q  ( *Q `  H ) ) ) )
21 recidnq 6491 . . . . . . . . 9  |-  ( H  e.  Q.  ->  ( H  .Q  ( *Q `  H ) )  =  1Q )
2221oveq2d 5528 . . . . . . . 8  |-  ( H  e.  Q.  ->  ( G  .Q  ( H  .Q  ( *Q `  H ) ) )  =  ( G  .Q  1Q ) )
2311, 22syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  ( H  .Q  ( *Q `  H ) ) )  =  ( G  .Q  1Q ) )
24 mulidnq 6487 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
257, 24syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  1Q )  =  G )
2620, 23, 253eqtrd 2076 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  .Q  ( *Q `  H ) )  =  G )
2726breq2d 3776 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  <Q  ( ( G  .Q  H )  .Q  ( *Q `  H
) )  <->  ( X  .Q  ( *Q `  H
) )  <Q  G ) )
2818, 27bitrd 177 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  <->  ( X  .Q  ( *Q `  H
) )  <Q  G ) )
29 prcdnql 6582 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  -> 
( ( X  .Q  ( *Q `  H ) )  <Q  G  ->  ( X  .Q  ( *Q
`  H ) )  e.  ( 1st `  A
) ) )
304, 29sylan 267 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  -> 
( ( X  .Q  ( *Q `  H ) )  <Q  G  ->  ( X  .Q  ( *Q
`  H ) )  e.  ( 1st `  A
) ) )
3130ad2antrr 457 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  <Q  G  ->  ( X  .Q  ( *Q
`  H ) )  e.  ( 1st `  A
) ) )
3228, 31sylbid 139 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  -> 
( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
) ) )
33 df-imp 6567 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  .Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  .Q  z
) ) } >. )
34 mulclnq 6474 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3533, 34genpprecll 6612 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  /\  H  e.  ( 1st `  B ) )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
3635exp4b 349 . . . . . . 7  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( H  e.  ( 1st `  B
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) ) ) )
3736com34 77 . . . . . 6  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( H  e.  ( 1st `  B )  ->  (
( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) ) ) )
3837imp32 244 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
3938adantlr 446 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
4039adantr 261 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A )  ->  (
( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
4132, 40syld 40 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  -> 
( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
42 mulassnqg 6482 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  H )  e.  Q.  /\  H  e.  Q. )  ->  (
( X  .Q  ( *Q `  H ) )  .Q  H )  =  ( X  .Q  (
( *Q `  H
)  .Q  H ) ) )
433, 15, 11, 42syl3anc 1135 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  =  ( X  .Q  ( ( *Q `  H )  .Q  H
) ) )
44 mulcomnqg 6481 . . . . . . 7  |-  ( ( ( *Q `  H
)  e.  Q.  /\  H  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  ( H  .Q  ( *Q `  H ) ) )
4515, 11, 44syl2anc 391 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  ( H  .Q  ( *Q `  H ) ) )
4611, 21syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( H  .Q  ( *Q `  H ) )  =  1Q )
4745, 46eqtrd 2072 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  1Q )
4847oveq2d 5528 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  H
)  .Q  H ) )  =  ( X  .Q  1Q ) )
49 mulidnq 6487 . . . . 5  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
5049adantl 262 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
5143, 48, 503eqtrd 2076 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  =  X )
5251eleq1d 2106 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) )  <-> 
X  e.  ( 1st `  ( A  .P.  B
) ) ) )
5341, 52sylibd 138 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  ->  X  e.  ( 1st `  ( A  .P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378   1Qc1q 6379    .Q cmq 6381   *Qcrq 6382    <Q cltq 6383   P.cnp 6389    .P. cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-imp 6567
This theorem is referenced by:  mullocprlem  6668  mulclpr  6670
  Copyright terms: Public domain W3C validator