ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru Unicode version

Theorem nqpru 6650
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by 
<P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <-> 
B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
Distinct variable group:    A, l, u
Allowed substitution hints:    B( u, l)

Proof of Theorem nqpru
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 6573 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnminu 6587 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  E. x  e.  ( 2nd `  B ) x 
<Q  A )
31, 2sylan 267 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  E. x  e.  ( 2nd `  B ) x 
<Q  A )
4 elprnqu 6580 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 2nd `  B ) )  ->  x  e.  Q. )
51, 4sylan 267 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  x  e.  ( 2nd `  B ) )  ->  x  e.  Q. )
65ad2ant2r 478 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  Q. )
7 simprl 483 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  ( 2nd `  B ) )
8 vex 2560 . . . . . . . . . . . 12  |-  x  e. 
_V
9 breq1 3767 . . . . . . . . . . . 12  |-  ( l  =  x  ->  (
l  <Q  A  <->  x  <Q  A ) )
108, 9elab 2687 . . . . . . . . . . 11  |-  ( x  e.  { l  |  l  <Q  A }  <->  x 
<Q  A )
1110biimpri 124 . . . . . . . . . 10  |-  ( x 
<Q  A  ->  x  e. 
{ l  |  l 
<Q  A } )
12 ltnqex 6647 . . . . . . . . . . . 12  |-  { l  |  l  <Q  A }  e.  _V
13 gtnqex 6648 . . . . . . . . . . . 12  |-  { u  |  A  <Q  u }  e.  _V
1412, 13op1st 5773 . . . . . . . . . . 11  |-  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { l  |  l 
<Q  A }
1514eleq2i 2104 . . . . . . . . . 10  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  e.  { l  |  l  <Q  A }
)
1611, 15sylibr 137 . . . . . . . . 9  |-  ( x 
<Q  A  ->  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
1716ad2antll 460 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
18 19.8a 1482 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) ) ) )
196, 7, 17, 18syl12anc 1133 . . . . . . 7  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) ) ) )
20 df-rex 2312 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )  <->  E. x
( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2119, 20sylibr 137 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )
22 elprnqu 6580 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  A  e.  Q. )
231, 22sylan 267 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  A  e.  Q. )
24 nqprlu 6645 . . . . . . . . 9  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
25 ltdfpr 6604 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P. )  ->  ( B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )
2624, 25sylan2 270 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  Q. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2723, 26syldan 266 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  -> 
( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
2827adantr 261 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  ( B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )
2921, 28mpbird 156 . . . . 5  |-  ( ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  /\  ( x  e.  ( 2nd `  B )  /\  x  <Q  A ) )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
303, 29rexlimddv 2437 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  ( 2nd `  B ) )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
3130ex 108 . . 3  |-  ( B  e.  P.  ->  ( A  e.  ( 2nd `  B )  ->  B  <P 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) )
3231adantl 262 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  ->  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
3326ancoms 255 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  B
)  /\  x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
) ) )
3433biimpa 280 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )
3515, 10bitri 173 . . . . . . . 8  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  <Q  A )
3635biimpi 113 . . . . . . 7  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  x  <Q  A )
3736ad2antll 460 . . . . . 6  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) )  ->  x  <Q  A )
3837adantl 262 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  x  <Q  A )
39 simpllr 486 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  B  e.  P. )
40 simprrl 491 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  x  e.  ( 2nd `  B ) )
41 prcunqu 6583 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 2nd `  B ) )  -> 
( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
421, 41sylan 267 . . . . . 6  |-  ( ( B  e.  P.  /\  x  e.  ( 2nd `  B ) )  -> 
( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
4339, 40, 42syl2anc 391 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  ( x  <Q  A  ->  A  e.  ( 2nd `  B ) ) )
4438, 43mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. )  /\  (
x  e.  Q.  /\  ( x  e.  ( 2nd `  B )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) ) ) )  ->  A  e.  ( 2nd `  B ) )
4534, 44rexlimddv 2437 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  e.  ( 2nd `  B ) )
4645ex 108 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  ->  A  e.  ( 2nd `  B
) ) )
4732, 46impbid 120 1  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 2nd `  B )  <-> 
B  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   {cab 2026   E.wrex 2307   <.cop 3378   class class class wbr 3764   ` cfv 4902   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    <Q cltq 6383   P.cnp 6389    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  prplnqu  6718  caucvgprprlemmu  6793  caucvgprprlemopu  6797  caucvgprprlemexbt  6804  caucvgprprlem2  6808
  Copyright terms: Public domain W3C validator