ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprxx Unicode version

Theorem nqprxx 6644
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprxx  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Distinct variable group:    x, A

Proof of Theorem nqprxx
Dummy variables  r  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprm 6640 . . 3  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
2 ltrelnq 6463 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4392 . . . . . 6  |-  ( x 
<Q  A  ->  ( x  e.  Q.  /\  A  e.  Q. ) )
43simpld 105 . . . . 5  |-  ( x 
<Q  A  ->  x  e. 
Q. )
54abssi 3015 . . . 4  |-  { x  |  x  <Q  A }  C_ 
Q.
62brel 4392 . . . . . 6  |-  ( A 
<Q  x  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
76simprd 107 . . . . 5  |-  ( A 
<Q  x  ->  x  e. 
Q. )
87abssi 3015 . . . 4  |-  { x  |  A  <Q  x }  C_ 
Q.
95, 8pm3.2i 257 . . 3  |-  ( { x  |  x  <Q  A }  C_  Q.  /\  {
x  |  A  <Q  x }  C_  Q. )
101, 9jctil 295 . 2  |-  ( A  e.  Q.  ->  (
( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) ) )
11 nqprrnd 6641 . . 3  |-  ( A  e.  Q.  ->  ( A. q  e.  Q.  ( q  e.  {
x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
12 nqprdisj 6642 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
) )
13 nqprloc 6643 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
1411, 12, 133jca 1084 . 2  |-  ( A  e.  Q.  ->  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) )
15 elinp 6572 . 2  |-  ( <. { x  |  x  <Q  A } ,  {
x  |  A  <Q  x } >.  e.  P.  <->  ( ( ( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )  /\  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) ) )
1610, 14, 15sylanbrc 394 1  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307    C_ wss 2917   <.cop 3378   class class class wbr 3764   Q.cnq 6378    <Q cltq 6383   P.cnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  nqprlu  6645
  Copyright terms: Public domain W3C validator