![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1 | Unicode version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 2960 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sstr2 2952 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 262 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | sstr2 2952 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | adantr 261 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | sylbi 114 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 |
This theorem is referenced by: sseq12 2968 sseq1i 2969 sseq1d 2972 nssne2 3002 psseq1 3031 sspsstr 3050 sbss 3329 pwjust 3360 elpw 3365 elpwg 3367 sssnr 3524 ssprr 3527 sstpr 3528 unimax 3614 trss 3863 elssabg 3902 bnd2 3926 mss 3962 exss 3963 frforeq2 4082 ordtri2orexmid 4248 ontr2exmid 4250 onsucsssucexmid 4252 reg2exmidlema 4259 sucprcreg 4273 ordtri2or2exmid 4296 onintexmid 4297 tfis 4306 tfisi 4310 elnn 4328 nnregexmid 4342 releq 4422 xpsspw 4450 iss 4654 relcnvtr 4840 iotass 4884 fununi 4967 funcnvuni 4968 funimaexglem 4982 ffoss 5158 ssimaex 5234 tfrlem1 5923 nnsucsssuc 6071 qsss 6165 phpm 6327 ssfiexmid 6336 findcard2d 6348 findcard2sd 6349 diffifi 6351 elinp 6572 sumeq1 9874 bj-om 10061 bj-2inf 10062 bj-nntrans 10076 bj-omtrans 10081 |
Copyright terms: Public domain | W3C validator |