ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsspw Unicode version

Theorem xpsspw 4450
Description: A cross product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )

Proof of Theorem xpsspw
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4361 . . . 4  |-  ( z  e.  ( A  X.  B )  ->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
2 vex 2560 . . . . . . . 8  |-  x  e. 
_V
3 vex 2560 . . . . . . . 8  |-  y  e. 
_V
42, 3dfop 3548 . . . . . . 7  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
5 snssi 3508 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  { x }  C_  A )
6 ssun3 3108 . . . . . . . . . . . . 13  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  B
) )
75, 6syl 14 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  B ) )
87adantr 261 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  C_  ( A  u.  B
) )
9 sseq1 2966 . . . . . . . . . . 11  |-  ( z  =  { x }  ->  ( z  C_  ( A  u.  B )  <->  { x }  C_  ( A  u.  B )
) )
108, 9syl5ibrcom 146 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  {
x }  ->  z  C_  ( A  u.  B
) ) )
11 df-pr 3382 . . . . . . . . . . . 12  |-  { x ,  y }  =  ( { x }  u.  { y } )
12 snssi 3508 . . . . . . . . . . . . . . 15  |-  ( y  e.  B  ->  { y }  C_  B )
13 ssun4 3109 . . . . . . . . . . . . . . 15  |-  ( { y }  C_  B  ->  { y }  C_  ( A  u.  B
) )
1412, 13syl 14 . . . . . . . . . . . . . 14  |-  ( y  e.  B  ->  { y }  C_  ( A  u.  B ) )
157, 14anim12i 321 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) ) )
16 unss 3117 . . . . . . . . . . . . 13  |-  ( ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) )  <->  ( {
x }  u.  {
y } )  C_  ( A  u.  B
) )
1715, 16sylib 127 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  u.  { y } ) 
C_  ( A  u.  B ) )
1811, 17syl5eqss 2989 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  C_  ( A  u.  B ) )
19 sseq1 2966 . . . . . . . . . . 11  |-  ( z  =  { x ,  y }  ->  (
z  C_  ( A  u.  B )  <->  { x ,  y }  C_  ( A  u.  B
) ) )
2018, 19syl5ibrcom 146 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  {
x ,  y }  ->  z  C_  ( A  u.  B )
) )
2110, 20jaod 637 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( z  =  { x }  \/  z  =  { x ,  y } )  ->  z  C_  ( A  u.  B )
) )
22 vex 2560 . . . . . . . . . 10  |-  z  e. 
_V
2322elpr 3396 . . . . . . . . 9  |-  ( z  e.  { { x } ,  { x ,  y } }  <->  ( z  =  { x }  \/  z  =  { x ,  y } ) )
2422elpw 3365 . . . . . . . . 9  |-  ( z  e.  ~P ( A  u.  B )  <->  z  C_  ( A  u.  B
) )
2521, 23, 243imtr4g 194 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  e.  { { x } ,  { x ,  y } }  ->  z  e.  ~P ( A  u.  B ) ) )
2625ssrdv 2951 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { { x } ,  { x ,  y } }  C_  ~P ( A  u.  B
) )
274, 26syl5eqss 2989 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  C_ 
~P ( A  u.  B ) )
28 sseq1 2966 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  C_  ~P ( A  u.  B
)  <->  <. x ,  y
>.  C_  ~P ( A  u.  B ) ) )
2928biimpar 281 . . . . . 6  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  C_  ~P ( A  u.  B
) )  ->  z  C_ 
~P ( A  u.  B ) )
3027, 29sylan2 270 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  z  C_  ~P ( A  u.  B
) )
3130exlimivv 1776 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  z  C_  ~P ( A  u.  B
) )
321, 31syl 14 . . 3  |-  ( z  e.  ( A  X.  B )  ->  z  C_ 
~P ( A  u.  B ) )
3322elpw 3365 . . 3  |-  ( z  e.  ~P ~P ( A  u.  B )  <->  z 
C_  ~P ( A  u.  B ) )
3432, 33sylibr 137 . 2  |-  ( z  e.  ( A  X.  B )  ->  z  e.  ~P ~P ( A  u.  B ) )
3534ssriv 2949 1  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    \/ wo 629    = wceq 1243   E.wex 1381    e. wcel 1393    u. cun 2915    C_ wss 2917   ~Pcpw 3359   {csn 3375   {cpr 3376   <.cop 3378    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351
This theorem is referenced by:  unixpss  4451  xpexg  4452
  Copyright terms: Public domain W3C validator