Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 2972
 Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1
Assertion
Ref Expression
sseq1d

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2
2 sseq1 2966 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243   wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931 This theorem is referenced by:  sseq12d  2974  eqsstrd  2979  snssg  3500  ssiun2s  3701  treq  3860  onsucsssucexmid  4252  funimass1  4976  feq1  5030  sbcfg  5045  fvmptssdm  5255  fvimacnvi  5281  nnsucsssuc  6071  ereq1  6113
 Copyright terms: Public domain W3C validator