ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnr Structured version   Unicode version

Theorem sssnr 3515
Description: Empty set and the singleton itself are subsets of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnr  (/)  { }  C_  { }

Proof of Theorem sssnr
StepHypRef Expression
1 0ss 3249 . . 3  (/)  C_  { }
2 sseq1 2960 . . 3  (/)  C_  { }  (/)  C_  { }
31, 2mpbiri 157 . 2  (/)  C_  { }
4 eqimss 2991 . 2  { }  C_  { }
53, 4jaoi 635 1  (/)  { }  C_  { }
Colors of variables: wff set class
Syntax hints:   wi 4   wo 628   wceq 1242    C_ wss 2911   (/)c0 3218   {csn 3367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-in 2918  df-ss 2925  df-nul 3219
This theorem is referenced by:  pwsnss  3565
  Copyright terms: Public domain W3C validator