ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaex Unicode version

Theorem ssimaex 5234
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1  |-  A  e. 
_V
Assertion
Ref Expression
ssimaex  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ssimaex
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 4632 . . . . 5  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21imaeq2i 4666 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " ( A  i^i  dom  F )
)
3 imadmres 4813 . . . 4  |-  ( F
" dom  ( F  |`  A ) )  =  ( F " A
)
42, 3eqtr3i 2062 . . 3  |-  ( F
" ( A  i^i  dom 
F ) )  =  ( F " A
)
54sseq2i 2970 . 2  |-  ( B 
C_  ( F "
( A  i^i  dom  F ) )  <->  B  C_  ( F " A ) )
6 ssrab2 3025 . . . 4  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  ( A  i^i  dom  F
)
7 ssel2 2940 . . . . . . . . 9  |-  ( ( B  C_  ( F " ( A  i^i  dom  F ) )  /\  z  e.  B )  ->  z  e.  ( F " ( A  i^i  dom  F )
) )
87adantll 445 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" ( A  i^i  dom 
F ) ) )
9 fvelima 5225 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  z  e.  ( F " ( A  i^i  dom  F )
) )  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z )
109ex 108 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  E. w  e.  ( A  i^i  dom  F ) ( F `  w )  =  z ) )
1110adantr 261 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  ->  E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z ) )
12 eleq1a 2109 . . . . . . . . . . . . . . . 16  |-  ( z  e.  B  ->  (
( F `  w
)  =  z  -> 
( F `  w
)  e.  B ) )
1312anim2d 320 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) ) )
14 fveq2 5178 . . . . . . . . . . . . . . . . 17  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
1514eleq1d 2106 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
( F `  y
)  e.  B  <->  ( F `  w )  e.  B
) )
1615elrab 2698 . . . . . . . . . . . . . . 15  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  <->  ( w  e.  ( A  i^i  dom  F )  /\  ( F `
 w )  e.  B ) )
1713, 16syl6ibr 151 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
18 simpr 103 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  =  z )  ->  ( F `  w )  =  z )
1918a1i 9 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( F `  w )  =  z ) )
2017, 19jcad 291 . . . . . . . . . . . . 13  |-  ( z  e.  B  ->  (
( w  e.  ( A  i^i  dom  F
)  /\  ( F `  w )  =  z )  ->  ( w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  /\  ( F `  w )  =  z ) ) )
2120reximdv2 2418 . . . . . . . . . . . 12  |-  ( z  e.  B  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2221adantl 262 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
23 funfn 4931 . . . . . . . . . . . . 13  |-  ( Fun 
F  <->  F  Fn  dom  F )
24 inss2 3158 . . . . . . . . . . . . . . 15  |-  ( A  i^i  dom  F )  C_ 
dom  F
256, 24sstri 2954 . . . . . . . . . . . . . 14  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  C_  dom  F
26 fvelimab 5229 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  dom  F  /\  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  dom  F )  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2725, 26mpan2 401 . . . . . . . . . . . . 13  |-  ( F  Fn  dom  F  -> 
( z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z ) )
2823, 27sylbi 114 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
2928adantr 261 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  <->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
3022, 29sylibrd 158 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  B )  ->  ( E. w  e.  ( A  i^i  dom  F )
( F `  w
)  =  z  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3111, 30syld 40 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  B )  ->  (
z  e.  ( F
" ( A  i^i  dom 
F ) )  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
3231adantlr 446 . . . . . . . 8  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  ( z  e.  ( F " ( A  i^i  dom  F )
)  ->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
338, 32mpd 13 . . . . . . 7  |-  ( ( ( Fun  F  /\  B  C_  ( F "
( A  i^i  dom  F ) ) )  /\  z  e.  B )  ->  z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )
3433ex 108 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  -> 
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) )
35 fvelima 5225 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )  ->  E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z )
3635ex 108 . . . . . . . 8  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  E. w  e.  { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  ( F `
 w )  =  z ) )
37 eleq1 2100 . . . . . . . . . . . 12  |-  ( ( F `  w )  =  z  ->  (
( F `  w
)  e.  B  <->  z  e.  B ) )
3837biimpcd 148 . . . . . . . . . . 11  |-  ( ( F `  w )  e.  B  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
3938adantl 262 . . . . . . . . . 10  |-  ( ( w  e.  ( A  i^i  dom  F )  /\  ( F `  w
)  e.  B )  ->  ( ( F `
 w )  =  z  ->  z  e.  B ) )
4016, 39sylbi 114 . . . . . . . . 9  |-  ( w  e.  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( F `  w
)  =  z  -> 
z  e.  B ) )
4140rexlimiv 2427 . . . . . . . 8  |-  ( E. w  e.  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  ( F `  w )  =  z  ->  z  e.  B )
4236, 41syl6 29 . . . . . . 7  |-  ( Fun 
F  ->  ( z  e.  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } )  ->  z  e.  B ) )
4342adantr 261 . . . . . 6  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  ( F
" { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } )  -> 
z  e.  B ) )
4434, 43impbid 120 . . . . 5  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  (
z  e.  B  <->  z  e.  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
4544eqrdv 2038 . . . 4  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  B  =  ( F " { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B } ) )
46 ssimaex.1 . . . . . . 7  |-  A  e. 
_V
4746inex1 3891 . . . . . 6  |-  ( A  i^i  dom  F )  e.  _V
4847rabex 3901 . . . . 5  |-  { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B }  e.  _V
49 sseq1 2966 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
x  C_  ( A  i^i  dom  F )  <->  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )
) )
50 imaeq2 4664 . . . . . . 7  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( F " x )  =  ( F " {
y  e.  ( A  i^i  dom  F )  |  ( F `  y )  e.  B } ) )
5150eqeq2d 2051 . . . . . 6  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  ( B  =  ( F " x )  <->  B  =  ( F " { y  e.  ( A  i^i  dom 
F )  |  ( F `  y )  e.  B } ) ) )
5249, 51anbi12d 442 . . . . 5  |-  ( x  =  { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  ->  (
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  <-> 
( { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) ) ) )
5348, 52spcev 2647 . . . 4  |-  ( ( { y  e.  ( A  i^i  dom  F
)  |  ( F `
 y )  e.  B }  C_  ( A  i^i  dom  F )  /\  B  =  ( F " { y  e.  ( A  i^i  dom  F )  |  ( F `
 y )  e.  B } ) )  ->  E. x ( x 
C_  ( A  i^i  dom 
F )  /\  B  =  ( F "
x ) ) )
546, 45, 53sylancr 393 . . 3  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) ) )
55 inss1 3157 . . . . . 6  |-  ( A  i^i  dom  F )  C_  A
56 sstr 2953 . . . . . 6  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  ( A  i^i  dom  F
)  C_  A )  ->  x  C_  A )
5755, 56mpan2 401 . . . . 5  |-  ( x 
C_  ( A  i^i  dom 
F )  ->  x  C_  A )
5857anim1i 323 . . . 4  |-  ( ( x  C_  ( A  i^i  dom  F )  /\  B  =  ( F " x ) )  -> 
( x  C_  A  /\  B  =  ( F " x ) ) )
5958eximi 1491 . . 3  |-  ( E. x ( x  C_  ( A  i^i  dom  F
)  /\  B  =  ( F " x ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
6054, 59syl 14 . 2  |-  ( ( Fun  F  /\  B  C_  ( F " ( A  i^i  dom  F )
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
615, 60sylan2br 272 1  |-  ( ( Fun  F  /\  B  C_  ( F " A
) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   {crab 2310   _Vcvv 2557    i^i cin 2916    C_ wss 2917   dom cdm 4345    |` cres 4347   "cima 4348   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  ssimaexg  5235
  Copyright terms: Public domain W3C validator