ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvuni Unicode version

Theorem funcnvuni 4968
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 4960 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
funcnvuni  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A )
Distinct variable group:    f, g, A

Proof of Theorem funcnvuni
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 4509 . . . . . . . 8  |-  ( x  =  v  ->  `' x  =  `' v
)
21eqeq2d 2051 . . . . . . 7  |-  ( x  =  v  ->  (
z  =  `' x  <->  z  =  `' v ) )
32cbvrexv 2534 . . . . . 6  |-  ( E. x  e.  A  z  =  `' x  <->  E. v  e.  A  z  =  `' v )
4 cnveq 4509 . . . . . . . . . . 11  |-  ( f  =  v  ->  `' f  =  `' v
)
54funeqd 4923 . . . . . . . . . 10  |-  ( f  =  v  ->  ( Fun  `' f  <->  Fun  `' v ) )
6 sseq1 2966 . . . . . . . . . . . 12  |-  ( f  =  v  ->  (
f  C_  g  <->  v  C_  g ) )
7 sseq2 2967 . . . . . . . . . . . 12  |-  ( f  =  v  ->  (
g  C_  f  <->  g  C_  v ) )
86, 7orbi12d 707 . . . . . . . . . . 11  |-  ( f  =  v  ->  (
( f  C_  g  \/  g  C_  f )  <-> 
( v  C_  g  \/  g  C_  v ) ) )
98ralbidv 2326 . . . . . . . . . 10  |-  ( f  =  v  ->  ( A. g  e.  A  ( f  C_  g  \/  g  C_  f )  <->  A. g  e.  A  ( v  C_  g  \/  g  C_  v ) ) )
105, 9anbi12d 442 . . . . . . . . 9  |-  ( f  =  v  ->  (
( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  <->  ( Fun  `' v  /\  A. g  e.  A  ( v  C_  g  \/  g  C_  v ) ) ) )
1110rspcv 2652 . . . . . . . 8  |-  ( v  e.  A  ->  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  ( Fun  `' v  /\  A. g  e.  A  ( v  C_  g  \/  g  C_  v ) ) ) )
12 funeq 4921 . . . . . . . . . 10  |-  ( z  =  `' v  -> 
( Fun  z  <->  Fun  `' v ) )
1312biimprcd 149 . . . . . . . . 9  |-  ( Fun  `' v  ->  ( z  =  `' v  ->  Fun  z ) )
14 sseq2 2967 . . . . . . . . . . . . . . 15  |-  ( g  =  x  ->  (
v  C_  g  <->  v  C_  x ) )
15 sseq1 2966 . . . . . . . . . . . . . . 15  |-  ( g  =  x  ->  (
g  C_  v  <->  x  C_  v
) )
1614, 15orbi12d 707 . . . . . . . . . . . . . 14  |-  ( g  =  x  ->  (
( v  C_  g  \/  g  C_  v )  <-> 
( v  C_  x  \/  x  C_  v ) ) )
1716rspcv 2652 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  ( A. g  e.  A  ( v  C_  g  \/  g  C_  v )  ->  ( v  C_  x  \/  x  C_  v
) ) )
18 cnvss 4508 . . . . . . . . . . . . . . . 16  |-  ( v 
C_  x  ->  `' v  C_  `' x )
19 cnvss 4508 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  v  ->  `' x  C_  `' v )
2018, 19orim12i 676 . . . . . . . . . . . . . . 15  |-  ( ( v  C_  x  \/  x  C_  v )  -> 
( `' v  C_  `' x  \/  `' x  C_  `' v ) )
21 sseq12 2968 . . . . . . . . . . . . . . . . 17  |-  ( ( z  =  `' v  /\  w  =  `' x )  ->  (
z  C_  w  <->  `' v  C_  `' x ) )
2221ancoms 255 . . . . . . . . . . . . . . . 16  |-  ( ( w  =  `' x  /\  z  =  `' v )  ->  (
z  C_  w  <->  `' v  C_  `' x ) )
23 sseq12 2968 . . . . . . . . . . . . . . . 16  |-  ( ( w  =  `' x  /\  z  =  `' v )  ->  (
w  C_  z  <->  `' x  C_  `' v ) )
2422, 23orbi12d 707 . . . . . . . . . . . . . . 15  |-  ( ( w  =  `' x  /\  z  =  `' v )  ->  (
( z  C_  w  \/  w  C_  z )  <-> 
( `' v  C_  `' x  \/  `' x  C_  `' v ) ) )
2520, 24syl5ibrcom 146 . . . . . . . . . . . . . 14  |-  ( ( v  C_  x  \/  x  C_  v )  -> 
( ( w  =  `' x  /\  z  =  `' v )  -> 
( z  C_  w  \/  w  C_  z ) ) )
2625expd 245 . . . . . . . . . . . . 13  |-  ( ( v  C_  x  \/  x  C_  v )  -> 
( w  =  `' x  ->  ( z  =  `' v  ->  ( z 
C_  w  \/  w  C_  z ) ) ) )
2717, 26syl6com 31 . . . . . . . . . . . 12  |-  ( A. g  e.  A  (
v  C_  g  \/  g  C_  v )  -> 
( x  e.  A  ->  ( w  =  `' x  ->  ( z  =  `' v  ->  ( z 
C_  w  \/  w  C_  z ) ) ) ) )
2827rexlimdv 2432 . . . . . . . . . . 11  |-  ( A. g  e.  A  (
v  C_  g  \/  g  C_  v )  -> 
( E. x  e.  A  w  =  `' x  ->  ( z  =  `' v  ->  ( z 
C_  w  \/  w  C_  z ) ) ) )
2928com23 72 . . . . . . . . . 10  |-  ( A. g  e.  A  (
v  C_  g  \/  g  C_  v )  -> 
( z  =  `' v  ->  ( E. x  e.  A  w  =  `' x  ->  ( z 
C_  w  \/  w  C_  z ) ) ) )
3029alrimdv 1756 . . . . . . . . 9  |-  ( A. g  e.  A  (
v  C_  g  \/  g  C_  v )  -> 
( z  =  `' v  ->  A. w ( E. x  e.  A  w  =  `' x  -> 
( z  C_  w  \/  w  C_  z ) ) ) )
3113, 30anim12ii 325 . . . . . . . 8  |-  ( ( Fun  `' v  /\  A. g  e.  A  ( v  C_  g  \/  g  C_  v ) )  ->  ( z  =  `' v  ->  ( Fun  z  /\  A. w
( E. x  e.  A  w  =  `' x  ->  ( z  C_  w  \/  w  C_  z
) ) ) ) )
3211, 31syl6com 31 . . . . . . 7  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  -> 
( v  e.  A  ->  ( z  =  `' v  ->  ( Fun  z  /\  A. w ( E. x  e.  A  w  =  `' x  -> 
( z  C_  w  \/  w  C_  z ) ) ) ) ) )
3332rexlimdv 2432 . . . . . 6  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  -> 
( E. v  e.  A  z  =  `' v  ->  ( Fun  z  /\  A. w ( E. x  e.  A  w  =  `' x  -> 
( z  C_  w  \/  w  C_  z ) ) ) ) )
343, 33syl5bi 141 . . . . 5  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  -> 
( E. x  e.  A  z  =  `' x  ->  ( Fun  z  /\  A. w ( E. x  e.  A  w  =  `' x  -> 
( z  C_  w  \/  w  C_  z ) ) ) ) )
3534alrimiv 1754 . . . 4  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. z ( E. x  e.  A  z  =  `' x  ->  ( Fun  z  /\  A. w
( E. x  e.  A  w  =  `' x  ->  ( z  C_  w  \/  w  C_  z
) ) ) ) )
36 df-ral 2311 . . . . 5  |-  ( A. z  e.  { y  |  E. x  e.  A  y  =  `' x }  ( Fun  z  /\  A. w  e.  {
y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) )  <->  A. z
( z  e.  {
y  |  E. x  e.  A  y  =  `' x }  ->  ( Fun  z  /\  A. w  e.  { y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) ) ) )
37 vex 2560 . . . . . . . 8  |-  z  e. 
_V
38 eqeq1 2046 . . . . . . . . 9  |-  ( y  =  z  ->  (
y  =  `' x  <->  z  =  `' x ) )
3938rexbidv 2327 . . . . . . . 8  |-  ( y  =  z  ->  ( E. x  e.  A  y  =  `' x  <->  E. x  e.  A  z  =  `' x ) )
4037, 39elab 2687 . . . . . . 7  |-  ( z  e.  { y  |  E. x  e.  A  y  =  `' x } 
<->  E. x  e.  A  z  =  `' x
)
41 eqeq1 2046 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y  =  `' x  <->  w  =  `' x ) )
4241rexbidv 2327 . . . . . . . . 9  |-  ( y  =  w  ->  ( E. x  e.  A  y  =  `' x  <->  E. x  e.  A  w  =  `' x ) )
4342ralab 2701 . . . . . . . 8  |-  ( A. w  e.  { y  |  E. x  e.  A  y  =  `' x }  ( z  C_  w  \/  w  C_  z
)  <->  A. w ( E. x  e.  A  w  =  `' x  -> 
( z  C_  w  \/  w  C_  z ) ) )
4443anbi2i 430 . . . . . . 7  |-  ( ( Fun  z  /\  A. w  e.  { y  |  E. x  e.  A  y  =  `' x }  ( z  C_  w  \/  w  C_  z
) )  <->  ( Fun  z  /\  A. w ( E. x  e.  A  w  =  `' x  ->  ( z  C_  w  \/  w  C_  z ) ) ) )
4540, 44imbi12i 228 . . . . . 6  |-  ( ( z  e.  { y  |  E. x  e.  A  y  =  `' x }  ->  ( Fun  z  /\  A. w  e.  { y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) ) )  <-> 
( E. x  e.  A  z  =  `' x  ->  ( Fun  z  /\  A. w ( E. x  e.  A  w  =  `' x  -> 
( z  C_  w  \/  w  C_  z ) ) ) ) )
4645albii 1359 . . . . 5  |-  ( A. z ( z  e. 
{ y  |  E. x  e.  A  y  =  `' x }  ->  ( Fun  z  /\  A. w  e.  { y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) ) )  <->  A. z ( E. x  e.  A  z  =  `' x  ->  ( Fun  z  /\  A. w
( E. x  e.  A  w  =  `' x  ->  ( z  C_  w  \/  w  C_  z
) ) ) ) )
4736, 46bitr2i 174 . . . 4  |-  ( A. z ( E. x  e.  A  z  =  `' x  ->  ( Fun  z  /\  A. w
( E. x  e.  A  w  =  `' x  ->  ( z  C_  w  \/  w  C_  z
) ) ) )  <->  A. z  e.  { y  |  E. x  e.  A  y  =  `' x }  ( Fun  z  /\  A. w  e. 
{ y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) ) )
4835, 47sylib 127 . . 3  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  A. z  e.  { y  |  E. x  e.  A  y  =  `' x }  ( Fun  z  /\  A. w  e. 
{ y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) ) )
49 fununi 4967 . . 3  |-  ( A. z  e.  { y  |  E. x  e.  A  y  =  `' x }  ( Fun  z  /\  A. w  e.  {
y  |  E. x  e.  A  y  =  `' x }  ( z 
C_  w  \/  w  C_  z ) )  ->  Fun  U. { y  |  E. x  e.  A  y  =  `' x } )
5048, 49syl 14 . 2  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  U. { y  |  E. x  e.  A  y  =  `' x } )
51 cnvuni 4521 . . . 4  |-  `' U. A  =  U_ x  e.  A  `' x
52 vex 2560 . . . . . 6  |-  x  e. 
_V
5352cnvex 4856 . . . . 5  |-  `' x  e.  _V
5453dfiun2 3691 . . . 4  |-  U_ x  e.  A  `' x  =  U. { y  |  E. x  e.  A  y  =  `' x }
5551, 54eqtri 2060 . . 3  |-  `' U. A  =  U. { y  |  E. x  e.  A  y  =  `' x }
5655funeqi 4922 . 2  |-  ( Fun  `' U. A  <->  Fun  U. {
y  |  E. x  e.  A  y  =  `' x } )
5750, 56sylibr 137 1  |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f ) )  ->  Fun  `' U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307    C_ wss 2917   U.cuni 3580   U_ciun 3657   `'ccnv 4344   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904
This theorem is referenced by:  fun11uni  4969
  Copyright terms: Public domain W3C validator