ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem1 Unicode version

Theorem tfrlem1 5923
Description: A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlem1.1  |-  ( ph  ->  A  e.  On )
tfrlem1.2  |-  ( ph  ->  ( Fun  F  /\  A  C_  dom  F ) )
tfrlem1.3  |-  ( ph  ->  ( Fun  G  /\  A  C_  dom  G ) )
tfrlem1.4  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )
tfrlem1.5  |-  ( ph  ->  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )
Assertion
Ref Expression
tfrlem1  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
Distinct variable groups:    x, A    x, B    x, F    x, G
Allowed substitution hint:    ph( x)

Proof of Theorem tfrlem1
Dummy variables  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 2964 . 2  |-  A  C_  A
2 tfrlem1.1 . . 3  |-  ( ph  ->  A  e.  On )
3 sseq1 2966 . . . . . 6  |-  ( y  =  A  ->  (
y  C_  A  <->  A  C_  A
) )
4 raleq 2505 . . . . . 6  |-  ( y  =  A  ->  ( A. x  e.  y 
( F `  x
)  =  ( G `
 x )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
53, 4imbi12d 223 . . . . 5  |-  ( y  =  A  ->  (
( y  C_  A  ->  A. x  e.  y  ( F `  x
)  =  ( G `
 x ) )  <-> 
( A  C_  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
65imbi2d 219 . . . 4  |-  ( y  =  A  ->  (
( ph  ->  ( y 
C_  A  ->  A. x  e.  y  ( F `  x )  =  ( G `  x ) ) )  <->  ( ph  ->  ( A  C_  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) ) )
7 sseq1 2966 . . . . . . 7  |-  ( y  =  z  ->  (
y  C_  A  <->  z  C_  A ) )
8 raleq 2505 . . . . . . 7  |-  ( y  =  z  ->  ( A. x  e.  y 
( F `  x
)  =  ( G `
 x )  <->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )
97, 8imbi12d 223 . . . . . 6  |-  ( y  =  z  ->  (
( y  C_  A  ->  A. x  e.  y  ( F `  x
)  =  ( G `
 x ) )  <-> 
( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) ) )
109imbi2d 219 . . . . 5  |-  ( y  =  z  ->  (
( ph  ->  ( y 
C_  A  ->  A. x  e.  y  ( F `  x )  =  ( G `  x ) ) )  <->  ( ph  ->  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) ) ) )
11 r19.21v 2396 . . . . . 6  |-  ( A. z  e.  y  ( ph  ->  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  <->  ( ph  ->  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) ) )
12 simplll 485 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  ph )
1312adantr 261 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ph )
14 tfrlem1.2 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Fun  F  /\  A  C_  dom  F ) )
1513, 14syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( Fun  F  /\  A  C_  dom  F ) )
1615simpld 105 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  Fun  F )
17 funfn 4931 . . . . . . . . . . . . . . . 16  |-  ( Fun 
F  <->  F  Fn  dom  F )
1816, 17sylib 127 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  F  Fn  dom  F )
19 simpllr 486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  y  e.  On )
20 eloni 4112 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  On  ->  Ord  y )
2119, 20syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  Ord  y )
22 ordelss 4116 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  y  /\  w  e.  y )  ->  w  C_  y )
2321, 22sylan 267 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  w  C_  y )
24 simplr 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  y  C_  A )
2523, 24sstrd 2955 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  w  C_  A )
2615simprd 107 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  A  C_ 
dom  F )
2725, 26sstrd 2955 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  w  C_ 
dom  F )
28 fnssres 5012 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  dom  F  /\  w  C_  dom  F
)  ->  ( F  |`  w )  Fn  w
)
2918, 27, 28syl2anc 391 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( F  |`  w )  Fn  w )
30 tfrlem1.3 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Fun  G  /\  A  C_  dom  G ) )
3113, 30syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( Fun  G  /\  A  C_  dom  G ) )
3231simpld 105 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  Fun  G )
33 funfn 4931 . . . . . . . . . . . . . . . 16  |-  ( Fun 
G  <->  G  Fn  dom  G )
3432, 33sylib 127 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  G  Fn  dom  G )
3531simprd 107 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  A  C_ 
dom  G )
3625, 35sstrd 2955 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  w  C_ 
dom  G )
37 fnssres 5012 . . . . . . . . . . . . . . 15  |-  ( ( G  Fn  dom  G  /\  w  C_  dom  G
)  ->  ( G  |`  w )  Fn  w
)
3834, 36, 37syl2anc 391 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( G  |`  w )  Fn  w )
39 simpr 103 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  u  e.  w )
40 simplr 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  w  e.  y )
41 simplr 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )
4241ad2antrr 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )
4325adantr 261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  w  C_  A )
44 sseq1 2966 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  w  ->  (
z  C_  A  <->  w  C_  A
) )
45 raleq 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  w  ->  ( A. x  e.  z 
( F `  x
)  =  ( G `
 x )  <->  A. x  e.  w  ( F `  x )  =  ( G `  x ) ) )
4644, 45imbi12d 223 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  w  ->  (
( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) )  <-> 
( w  C_  A  ->  A. x  e.  w  ( F `  x )  =  ( G `  x ) ) ) )
4746rspcv 2652 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  y  ->  ( A. z  e.  y 
( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) )  ->  ( w  C_  A  ->  A. x  e.  w  ( F `  x )  =  ( G `  x ) ) ) )
4840, 42, 43, 47syl3c 57 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  A. x  e.  w  ( F `  x )  =  ( G `  x ) )
49 fveq2 5178 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  u  ->  ( F `  x )  =  ( F `  u ) )
50 fveq2 5178 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  u  ->  ( G `  x )  =  ( G `  u ) )
5149, 50eqeq12d 2054 . . . . . . . . . . . . . . . . 17  |-  ( x  =  u  ->  (
( F `  x
)  =  ( G `
 x )  <->  ( F `  u )  =  ( G `  u ) ) )
5251rspcv 2652 . . . . . . . . . . . . . . . 16  |-  ( u  e.  w  ->  ( A. x  e.  w  ( F `  x )  =  ( G `  x )  ->  ( F `  u )  =  ( G `  u ) ) )
5339, 48, 52sylc 56 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  ( F `  u )  =  ( G `  u ) )
54 fvres 5198 . . . . . . . . . . . . . . . 16  |-  ( u  e.  w  ->  (
( F  |`  w
) `  u )  =  ( F `  u ) )
5554adantl 262 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  (
( F  |`  w
) `  u )  =  ( F `  u ) )
56 fvres 5198 . . . . . . . . . . . . . . . 16  |-  ( u  e.  w  ->  (
( G  |`  w
) `  u )  =  ( G `  u ) )
5756adantl 262 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  (
( G  |`  w
) `  u )  =  ( G `  u ) )
5853, 55, 573eqtr4d 2082 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  /\  y  C_  A )  /\  w  e.  y )  /\  u  e.  w )  ->  (
( F  |`  w
) `  u )  =  ( ( G  |`  w ) `  u
) )
5929, 38, 58eqfnfvd 5268 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( F  |`  w )  =  ( G  |`  w
) )
6059fveq2d 5182 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( B `  ( F  |`  w ) )  =  ( B `  ( G  |`  w ) ) )
61 simpr 103 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  y  C_  A )
6261sselda 2945 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  w  e.  A )
63 tfrlem1.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )
6413, 63syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )
65 fveq2 5178 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
66 reseq2 4607 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  ( F  |`  x )  =  ( F  |`  w
) )
6766fveq2d 5182 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( B `  ( F  |`  x ) )  =  ( B `  ( F  |`  w ) ) )
6865, 67eqeq12d 2054 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
( F `  x
)  =  ( B `
 ( F  |`  x ) )  <->  ( F `  w )  =  ( B `  ( F  |`  w ) ) ) )
6968rspcva 2654 . . . . . . . . . . . . 13  |-  ( ( w  e.  A  /\  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )  ->  ( F `  w )  =  ( B `  ( F  |`  w ) ) )
7062, 64, 69syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( F `  w )  =  ( B `  ( F  |`  w ) ) )
71 tfrlem1.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )
7213, 71syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )
73 fveq2 5178 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( G `  x )  =  ( G `  w ) )
74 reseq2 4607 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  ( G  |`  x )  =  ( G  |`  w
) )
7574fveq2d 5182 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( B `  ( G  |`  x ) )  =  ( B `  ( G  |`  w ) ) )
7673, 75eqeq12d 2054 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
( G `  x
)  =  ( B `
 ( G  |`  x ) )  <->  ( G `  w )  =  ( B `  ( G  |`  w ) ) ) )
7776rspcva 2654 . . . . . . . . . . . . 13  |-  ( ( w  e.  A  /\  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )  ->  ( G `  w )  =  ( B `  ( G  |`  w ) ) )
7862, 72, 77syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( G `  w )  =  ( B `  ( G  |`  w ) ) )
7960, 70, 783eqtr4d 2082 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  /\  w  e.  y )  ->  ( F `  w )  =  ( G `  w ) )
8079ralrimiva 2392 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  A. w  e.  y  ( F `  w )  =  ( G `  w ) )
8165, 73eqeq12d 2054 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( F `  x
)  =  ( G `
 x )  <->  ( F `  w )  =  ( G `  w ) ) )
8281cbvralv 2533 . . . . . . . . . 10  |-  ( A. x  e.  y  ( F `  x )  =  ( G `  x )  <->  A. w  e.  y  ( F `  w )  =  ( G `  w ) )
8380, 82sylibr 137 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  On )  /\  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x
)  =  ( G `
 x ) ) )  /\  y  C_  A )  ->  A. x  e.  y  ( F `  x )  =  ( G `  x ) )
8483exp31 346 . . . . . . . 8  |-  ( (
ph  /\  y  e.  On )  ->  ( A. z  e.  y  (
z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) )  -> 
( y  C_  A  ->  A. x  e.  y  ( F `  x
)  =  ( G `
 x ) ) ) )
8584expcom 109 . . . . . . 7  |-  ( y  e.  On  ->  ( ph  ->  ( A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) )  ->  ( y  C_  A  ->  A. x  e.  y  ( F `  x )  =  ( G `  x ) ) ) ) )
8685a2d 23 . . . . . 6  |-  ( y  e.  On  ->  (
( ph  ->  A. z  e.  y  ( z  C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  ->  ( ph  ->  ( y  C_  A  ->  A. x  e.  y  ( F `  x
)  =  ( G `
 x ) ) ) ) )
8711, 86syl5bi 141 . . . . 5  |-  ( y  e.  On  ->  ( A. z  e.  y 
( ph  ->  ( z 
C_  A  ->  A. x  e.  z  ( F `  x )  =  ( G `  x ) ) )  ->  ( ph  ->  ( y  C_  A  ->  A. x  e.  y  ( F `  x
)  =  ( G `
 x ) ) ) ) )
8810, 87tfis2 4308 . . . 4  |-  ( y  e.  On  ->  ( ph  ->  ( y  C_  A  ->  A. x  e.  y  ( F `  x
)  =  ( G `
 x ) ) ) )
896, 88vtoclga 2619 . . 3  |-  ( A  e.  On  ->  ( ph  ->  ( A  C_  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
902, 89mpcom 32 . 2  |-  ( ph  ->  ( A  C_  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
911, 90mpi 15 1  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306    C_ wss 2917   Ord word 4099   Oncon0 4100   dom cdm 4345    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  tfrlem5  5930
  Copyright terms: Public domain W3C validator