ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem Unicode version

Theorem funimaexglem 4982
Description: Lemma for funimaexg 4983. It constitutes the interesting part of funimaexg 4983, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexglem
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 4928 . . . . . . . . . 10  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
21simprbi 260 . . . . . . . . 9  |-  ( Fun 
A  ->  A. x  e.  dom  A E* y  x A y )
323ad2ant1 925 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  dom  A E* y  x A y )
4 ssralv 3004 . . . . . . . . 9  |-  ( B 
C_  dom  A  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
543ad2ant3 927 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
63, 5mpd 13 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  B  E* y  x A y )
76alrimiv 1754 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. z A. x  e.  B  E* y  x A
y )
8 sseq1 2966 . . . . . . . . . . . . . . . . 17  |-  ( b  =  B  ->  (
b  C_  dom  A  <->  B  C_  dom  A ) )
98biimpar 281 . . . . . . . . . . . . . . . 16  |-  ( ( b  =  B  /\  B  C_  dom  A )  ->  b  C_  dom  A )
1093adant1 922 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  b  C_ 
dom  A )
11 simp1 904 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  Fun  A )
1210, 11jca 290 . . . . . . . . . . . . . 14  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  (
b  C_  dom  A  /\  Fun  A ) )
13 dffun8 4929 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
1413simprbi 260 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
A  ->  A. x  e.  dom  A E! y  x A y )
1514adantl 262 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  dom  A E! y  x A y )
16 ssel 2939 . . . . . . . . . . . . . . . . 17  |-  ( b 
C_  dom  A  ->  ( x  e.  b  ->  x  e.  dom  A ) )
1716adantr 261 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  x  e.  dom  A ) )
18 rsp 2369 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  dom  A E! y  x A y  ->  ( x  e. 
dom  A  ->  E! y  x A y ) )
1915, 17, 18sylsyld 52 . . . . . . . . . . . . . . 15  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  E! y  x A
y ) )
2019ralrimiv 2391 . . . . . . . . . . . . . 14  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  b  E! y  x A y )
21 zfrep6 3874 . . . . . . . . . . . . . 14  |-  ( A. x  e.  b  E! y  x A y  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
2212, 20, 213syl 17 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
23 raleq 2505 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  ( A. x  e.  b  E. y  e.  z  x A y  <->  A. x  e.  B  E. y  e.  z  x A
y ) )
2423exbidv 1706 . . . . . . . . . . . . . 14  |-  ( b  =  B  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
25243ad2ant2 926 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
2622, 25mpbid 135 . . . . . . . . . . . 12  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
27263com12 1108 . . . . . . . . . . 11  |-  ( ( b  =  B  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
28273expib 1107 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
2928vtocleg 2624 . . . . . . . . 9  |-  ( B  e.  C  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
30293impib 1102 . . . . . . . 8  |-  ( ( B  e.  C  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
31303com12 1108 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
32 df-rex 2312 . . . . . . . . . 10  |-  ( E. y  e.  z  x A y  <->  E. y
( y  e.  z  /\  x A y ) )
33 exancom 1499 . . . . . . . . . 10  |-  ( E. y ( y  e.  z  /\  x A y )  <->  E. y
( x A y  /\  y  e.  z ) )
3432, 33bitri 173 . . . . . . . . 9  |-  ( E. y  e.  z  x A y  <->  E. y
( x A y  /\  y  e.  z ) )
3534ralbii 2330 . . . . . . . 8  |-  ( A. x  e.  B  E. y  e.  z  x A y  <->  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )
3635exbii 1496 . . . . . . 7  |-  ( E. z A. x  e.  B  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z )
)
3731, 36sylib 127 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
38 19.29 1511 . . . . . . 7  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
39 nfcv 2178 . . . . . . . . . . 11  |-  F/_ y B
40 nfmo1 1912 . . . . . . . . . . 11  |-  F/ y E* y  x A y
4139, 40nfralxy 2360 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E* y  x A
y
42 nfe1 1385 . . . . . . . . . . 11  |-  F/ y E. y ( x A y  /\  y  e.  z )
4339, 42nfralxy 2360 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E. y ( x A y  /\  y  e.  z )
4441, 43nfan 1457 . . . . . . . . 9  |-  F/ y ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
45 r19.26 2441 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  <->  ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
46 mopick 1978 . . . . . . . . . . 11  |-  ( ( E* y  x A y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  (
x A y  -> 
y  e.  z ) )
4746ralimi 2384 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4845, 47sylbir 125 . . . . . . . . 9  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4944, 48alrimi 1415 . . . . . . . 8  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
5049eximi 1491 . . . . . . 7  |-  ( E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
5138, 50syl 14 . . . . . 6  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
527, 37, 51syl2anc 391 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
53 r19.23v 2425 . . . . . . 7  |-  ( A. x  e.  B  (
x A y  -> 
y  e.  z )  <-> 
( E. x  e.  B  x A y  ->  y  e.  z ) )
5453albii 1359 . . . . . 6  |-  ( A. y A. x  e.  B  ( x A y  ->  y  e.  z )  <->  A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5554exbii 1496 . . . . 5  |-  ( E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z )  <->  E. z A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5652, 55sylib 127 . . . 4  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
57 abss 3009 . . . . 5  |-  ( { y  |  E. x  e.  B  x A
y }  C_  z  <->  A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
5857exbii 1496 . . . 4  |-  ( E. z { y  |  E. x  e.  B  x A y }  C_  z 
<->  E. z A. y
( E. x  e.  B  x A y  ->  y  e.  z ) )
5956, 58sylibr 137 . . 3  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
60 dfima2 4670 . . . . 5  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
6160sseq1i 2969 . . . 4  |-  ( ( A " B ) 
C_  z  <->  { y  |  E. x  e.  B  x A y }  C_  z )
6261exbii 1496 . . 3  |-  ( E. z ( A " B )  C_  z  <->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
6359, 62sylibr 137 . 2  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z
( A " B
)  C_  z )
64 vex 2560 . . . 4  |-  z  e. 
_V
6564ssex 3894 . . 3  |-  ( ( A " B ) 
C_  z  ->  ( A " B )  e. 
_V )
6665exlimiv 1489 . 2  |-  ( E. z ( A " B )  C_  z  ->  ( A " B
)  e.  _V )
6763, 66syl 14 1  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   E!weu 1900   E*wmo 1901   {cab 2026   A.wral 2306   E.wrex 2307   _Vcvv 2557    C_ wss 2917   class class class wbr 3764   dom cdm 4345   "cima 4348   Rel wrel 4350   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904
This theorem is referenced by:  funimaexg  4983
  Copyright terms: Public domain W3C validator