Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfan | Unicode version |
Description: If is not free in and , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
nfan.1 | |
nfan.2 |
Ref | Expression |
---|---|
nfan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan.1 | . 2 | |
2 | nfan.2 | . . 3 | |
3 | 2 | a1i 9 | . 2 |
4 | 1, 3 | nfan1 1456 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wnf 1349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: nf3an 1458 cbvex2 1797 nfsbxyt 1819 sbcomxyyz 1846 nfsb4t 1890 clelab 2162 nfel 2186 2ralbida 2345 reean 2478 nfrabxy 2490 cbvrexf 2528 cbvreu 2531 cbvrab 2555 ceqsex2 2594 vtocl2gaf 2620 rspce 2651 eqvincf 2669 elrabf 2696 elrab3t 2697 rexab2 2707 morex 2725 reu2 2729 sbc2iegf 2828 rmo2ilem 2847 rmo3 2849 csbiebt 2886 csbie2t 2894 cbvrexcsf 2909 cbvreucsf 2910 cbvrabcsf 2911 nfopd 3566 eluniab 3592 dfnfc2 3598 nfdisjv 3757 nfopab 3825 cbvopab 3828 cbvopab1 3830 cbvopab2 3831 cbvopab1s 3832 mpteq12f 3837 nfmpt 3849 cbvmpt 3851 repizf2 3915 nfpo 4038 nfso 4039 nfwe 4092 onintonm 4243 peano2 4318 nfxp 4371 opeliunxp 4395 nfco 4501 elrnmpt1 4585 nfimad 4677 iota2 4893 dffun4f 4918 nffun 4924 imadif 4979 funimaexglem 4982 nffn 4995 nff 5043 nff1 5090 nffo 5105 nff1o 5124 fun11iun 5147 nffvd 5187 fv3 5197 fmptco 5330 nfiso 5446 cbvriota 5478 riota2df 5488 riota5f 5492 nfoprab 5557 mpt2eq123 5564 nfmpt2 5573 cbvoprab1 5576 cbvoprab2 5577 cbvoprab12 5578 cbvoprab3 5580 cbvmpt2x 5582 ovmpt2dxf 5626 opabex3d 5748 opabex3 5749 dfoprab4f 5819 fmpt2x 5826 nfrecs 5922 tfri3 5953 nffrec 5982 erovlem 6198 nneneq 6320 ac6sfi 6352 caucvgsrlemgt1 6879 nfsum1 9875 nfsum 9876 bdsepnft 10007 bdsepnfALT 10009 bj-findis 10104 strcollnft 10109 |
Copyright terms: Public domain | W3C validator |