ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbxyt Structured version   Unicode version

Theorem nfsbxyt 1816
Description: Closed form of nfsbxy 1815. (Contributed by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsbxyt  F/  F/
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)

Proof of Theorem nfsbxyt
StepHypRef Expression
1 ax-bnd 1396 . 2
2 nfs1v 1812 . . . . 5  F/
3 drsb1 1677 . . . . . 6
43drnf2 1619 . . . . 5  F/  F/
52, 4mpbii 136 . . . 4  F/
65a1d 22 . . 3  F/  F/
7 a16nf 1743 . . . . 5  F/
87a1d 22 . . . 4  F/  F/
9 df-nf 1347 . . . . . 6  F/
109albii 1356 . . . . 5  F/
11 sb5 1764 . . . . . . 7
12 nfa1 1431 . . . . . . . . 9  F/ F/
13 nfa1 1431 . . . . . . . . 9  F/ F/
1412, 13nfan 1454 . . . . . . . 8  F/ F/  F/
15 sp 1398 . . . . . . . . . 10  F/  F/
1615adantr 261 . . . . . . . . 9  F/  F/  F/
17 sp 1398 . . . . . . . . . 10  F/  F/
1817adantl 262 . . . . . . . . 9  F/  F/  F/
1916, 18nfand 1457 . . . . . . . 8  F/  F/  F/
2014, 19nfexd 1641 . . . . . . 7  F/  F/  F/
2111, 20nfxfrd 1361 . . . . . 6  F/  F/  F/
2221ex 108 . . . . 5  F/  F/  F/
2310, 22sylbir 125 . . . 4  F/  F/
248, 23jaoi 635 . . 3  F/  F/
256, 24jaoi 635 . 2  F/  F/
261, 25ax-mp 7 1  F/  F/
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wo 628  wal 1240   F/wnf 1346  wex 1378  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643
This theorem is referenced by:  nfsbt  1847
  Copyright terms: Public domain W3C validator